Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg7fvbwN Structured version   Visualization version   GIF version

Theorem cdlemg7fvbwN 38315
Description: Properties of a translation of an element not under 𝑊. TODO: Fix comment. Can this be simplified? Perhaps derived from cdleme48bw 38210? Done with a *ltrn* theorem? (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdlemg7fvbwN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊))

Proof of Theorem cdlemg7fvbwN
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 cdlemg4.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemg4.l . . . 4 = (le‘𝐾)
3 eqid 2734 . . . 4 (join‘𝐾) = (join‘𝐾)
4 eqid 2734 . . . 4 (meet‘𝐾) = (meet‘𝐾)
5 cdlemg4.a . . . 4 𝐴 = (Atoms‘𝐾)
6 cdlemg4.h . . . 4 𝐻 = (LHyp‘𝐾)
71, 2, 3, 4, 5, 6lhpmcvr2 37732 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
873adant3 1134 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
9 simp11 1205 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simp2 1139 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑟𝐴)
11 simp3l 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ¬ 𝑟 𝑊)
1210, 11jca 515 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
13 simp12 1206 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
14 simp13 1207 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐹𝑇)
15 simp3r 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)
16 cdlemg4.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
176, 16, 2, 3, 5, 4, 1cdlemg2fv 38307 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑋) = ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
189, 12, 13, 14, 15, 17syl122anc 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑋) = ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
19 simp11l 1286 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐾 ∈ HL)
2019hllatd 37072 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
212, 5, 6, 16ltrnel 37847 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊)) → ((𝐹𝑟) ∈ 𝐴 ∧ ¬ (𝐹𝑟) 𝑊))
2221simpld 498 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊)) → (𝐹𝑟) ∈ 𝐴)
239, 14, 12, 22syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑟) ∈ 𝐴)
241, 5atbase 36997 . . . . . . 7 ((𝐹𝑟) ∈ 𝐴 → (𝐹𝑟) ∈ 𝐵)
2523, 24syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑟) ∈ 𝐵)
26 simp12l 1288 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑋𝐵)
27 simp11r 1287 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑊𝐻)
281, 6lhpbase 37706 . . . . . . . 8 (𝑊𝐻𝑊𝐵)
2927, 28syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑊𝐵)
301, 4latmcl 17918 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋(meet‘𝐾)𝑊) ∈ 𝐵)
3120, 26, 29, 30syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑋(meet‘𝐾)𝑊) ∈ 𝐵)
321, 3latjcl 17917 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝑟) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑊) ∈ 𝐵) → ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∈ 𝐵)
3320, 25, 31, 32syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∈ 𝐵)
3418, 33eqeltrd 2834 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑋) ∈ 𝐵)
3521simprd 499 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊)) → ¬ (𝐹𝑟) 𝑊)
369, 14, 12, 35syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ¬ (𝐹𝑟) 𝑊)
371, 2, 3latlej1 17926 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑟) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑊) ∈ 𝐵) → (𝐹𝑟) ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
3820, 25, 31, 37syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑟) ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
391, 2lattr 17922 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝐹𝑟) ∈ 𝐵 ∧ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∈ 𝐵𝑊𝐵)) → (((𝐹𝑟) ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∧ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊) → (𝐹𝑟) 𝑊))
4020, 25, 33, 29, 39syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((𝐹𝑟) ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∧ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊) → (𝐹𝑟) 𝑊))
4138, 40mpand 695 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊 → (𝐹𝑟) 𝑊))
4236, 41mtod 201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ¬ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊)
4318breq1d 5053 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝐹𝑋) 𝑊 ↔ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊))
4442, 43mtbird 328 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ¬ (𝐹𝑋) 𝑊)
4534, 44jca 515 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊))
4645rexlimdv3a 3198 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊)))
478, 46mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3055   class class class wbr 5043  cfv 6369  (class class class)co 7202  Basecbs 16684  lecple 16774  joincjn 17790  meetcmee 17791  Latclat 17909  Atomscatm 36971  HLchlt 37058  LHypclh 37692  LTrncltrn 37809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-riotaBAD 36661
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-1st 7750  df-2nd 7751  df-undef 8004  df-map 8499  df-proset 17774  df-poset 17792  df-plt 17808  df-lub 17824  df-glb 17825  df-join 17826  df-meet 17827  df-p0 17903  df-p1 17904  df-lat 17910  df-clat 17977  df-oposet 36884  df-ol 36886  df-oml 36887  df-covers 36974  df-ats 36975  df-atl 37006  df-cvlat 37030  df-hlat 37059  df-llines 37206  df-lplanes 37207  df-lvols 37208  df-lines 37209  df-psubsp 37211  df-pmap 37212  df-padd 37504  df-lhyp 37696  df-laut 37697  df-ldil 37812  df-ltrn 37813  df-trl 37867
This theorem is referenced by:  cdlemg7fvN  38332
  Copyright terms: Public domain W3C validator