MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo2 Structured version   Visualization version   GIF version

Theorem uzwo2 12951
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005.)
Assertion
Ref Expression
uzwo2 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃!𝑗𝑆𝑘𝑆 𝑗𝑘)
Distinct variable group:   𝑗,𝑘,𝑆
Allowed substitution hints:   𝑀(𝑗,𝑘)

Proof of Theorem uzwo2
StepHypRef Expression
1 uzssz 12896 . . . 4 (ℤ𝑀) ⊆ ℤ
2 zssre 12617 . . . 4 ℤ ⊆ ℝ
31, 2sstri 4004 . . 3 (ℤ𝑀) ⊆ ℝ
4 sstr 4003 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ (ℤ𝑀) ⊆ ℝ) → 𝑆 ⊆ ℝ)
53, 4mpan2 691 . 2 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ ℝ)
6 uzwo 12950 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
7 lbreu 12215 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑗𝑆𝑘𝑆 𝑗𝑘) → ∃!𝑗𝑆𝑘𝑆 𝑗𝑘)
85, 6, 7syl2an2r 685 1 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃!𝑗𝑆𝑘𝑆 𝑗𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wne 2937  wral 3058  wrex 3067  ∃!wreu 3375  wss 3962  c0 4338   class class class wbr 5147  cfv 6562  cr 11151  cle 11293  cz 12610  cuz 12875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator