MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negfi Structured version   Visualization version   GIF version

Theorem negfi 11581
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
negfi ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem negfi
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3959 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑎𝐴𝑎 ∈ ℝ))
2 renegcl 10941 . . . . . . . . 9 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
31, 2syl6 35 . . . . . . . 8 (𝐴 ⊆ ℝ → (𝑎𝐴 → -𝑎 ∈ ℝ))
43ralrimiv 3179 . . . . . . 7 (𝐴 ⊆ ℝ → ∀𝑎𝐴 -𝑎 ∈ ℝ)
5 dmmptg 6089 . . . . . . 7 (∀𝑎𝐴 -𝑎 ∈ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
64, 5syl 17 . . . . . 6 (𝐴 ⊆ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
76eqcomd 2825 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 = dom (𝑎𝐴 ↦ -𝑎))
87eleq1d 2895 . . . 4 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
9 funmpt 6386 . . . . 5 Fun (𝑎𝐴 ↦ -𝑎)
10 fundmfibi 8795 . . . . 5 (Fun (𝑎𝐴 ↦ -𝑎) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
119, 10mp1i 13 . . . 4 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
128, 11bitr4d 284 . . 3 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ (𝑎𝐴 ↦ -𝑎) ∈ Fin))
13 reex 10620 . . . . . 6 ℝ ∈ V
1413ssex 5216 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
1514mptexd 6979 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎) ∈ V)
16 eqid 2819 . . . . . 6 (𝑎𝐴 ↦ -𝑎) = (𝑎𝐴 ↦ -𝑎)
1716negf1o 11062 . . . . 5 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
18 f1of1 6607 . . . . 5 ((𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴} → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
1917, 18syl 17 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
20 f1vrnfibi 8801 . . . 4 (((𝑎𝐴 ↦ -𝑎) ∈ V ∧ (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴}) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
2115, 19, 20syl2anc 586 . . 3 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
221imp 409 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
232adantl 484 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → -𝑎 ∈ ℝ)
24 recn 10619 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
2524negnegd 10980 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → --𝑎 = 𝑎)
2625eqcomd 2825 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → 𝑎 = --𝑎)
2726eleq1d 2895 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (𝑎𝐴 ↔ --𝑎𝐴))
2827biimpcd 251 . . . . . . . . . . . . 13 (𝑎𝐴 → (𝑎 ∈ ℝ → --𝑎𝐴))
2928adantl 484 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑎 ∈ ℝ → --𝑎𝐴))
3029imp 409 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → --𝑎𝐴)
3123, 30jca 514 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
3222, 31mpdan 685 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
33 eleq1 2898 . . . . . . . . . 10 (𝑛 = -𝑎 → (𝑛 ∈ ℝ ↔ -𝑎 ∈ ℝ))
34 negeq 10870 . . . . . . . . . . 11 (𝑛 = -𝑎 → -𝑛 = --𝑎)
3534eleq1d 2895 . . . . . . . . . 10 (𝑛 = -𝑎 → (-𝑛𝐴 ↔ --𝑎𝐴))
3633, 35anbi12d 632 . . . . . . . . 9 (𝑛 = -𝑎 → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝐴)))
3732, 36syl5ibrcom 249 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
3837rexlimdva 3282 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
39 simprr 771 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → -𝑛𝐴)
40 negeq 10870 . . . . . . . . . . 11 (𝑎 = -𝑛 → -𝑎 = --𝑛)
4140eqeq2d 2830 . . . . . . . . . 10 (𝑎 = -𝑛 → (𝑛 = -𝑎𝑛 = --𝑛))
4241adantl 484 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) ∧ 𝑎 = -𝑛) → (𝑛 = -𝑎𝑛 = --𝑛))
43 recn 10619 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 𝑛 ∈ ℂ)
44 negneg 10928 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → --𝑛 = 𝑛)
4544eqcomd 2825 . . . . . . . . . . 11 (𝑛 ∈ ℂ → 𝑛 = --𝑛)
4643, 45syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ → 𝑛 = --𝑛)
4746ad2antrl 726 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → 𝑛 = --𝑛)
4839, 42, 47rspcedvd 3624 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → ∃𝑎𝐴 𝑛 = -𝑎)
4948ex 415 . . . . . . 7 (𝐴 ⊆ ℝ → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) → ∃𝑎𝐴 𝑛 = -𝑎))
5038, 49impbid 214 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 ↔ (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
5150abbidv 2883 . . . . 5 (𝐴 ⊆ ℝ → {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)})
5216rnmpt 5820 . . . . 5 ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎}
53 df-rab 3145 . . . . 5 {𝑛 ∈ ℝ ∣ -𝑛𝐴} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)}
5451, 52, 533eqtr4g 2879 . . . 4 (𝐴 ⊆ ℝ → ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∈ ℝ ∣ -𝑛𝐴})
5554eleq1d 2895 . . 3 (𝐴 ⊆ ℝ → (ran (𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5612, 21, 553bitrd 307 . 2 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5756biimpa 479 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  {cab 2797  wral 3136  wrex 3137  {crab 3140  Vcvv 3493  wss 3934  cmpt 5137  dom cdm 5548  ran crn 5549  Fun wfun 6342  1-1wf1 6345  1-1-ontowf1o 6347  Fincfn 8501  cc 10527  cr 10528  -cneg 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-sub 10864  df-neg 10865
This theorem is referenced by:  fiminreOLD  11582
  Copyright terms: Public domain W3C validator