MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negfi Structured version   Visualization version   GIF version

Theorem negfi 12071
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
negfi ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem negfi
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3923 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑎𝐴𝑎 ∈ ℝ))
2 renegcl 11424 . . . . . . . . 9 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
31, 2syl6 35 . . . . . . . 8 (𝐴 ⊆ ℝ → (𝑎𝐴 → -𝑎 ∈ ℝ))
43ralrimiv 3123 . . . . . . 7 (𝐴 ⊆ ℝ → ∀𝑎𝐴 -𝑎 ∈ ℝ)
5 dmmptg 6189 . . . . . . 7 (∀𝑎𝐴 -𝑎 ∈ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
64, 5syl 17 . . . . . 6 (𝐴 ⊆ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
76eqcomd 2737 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 = dom (𝑎𝐴 ↦ -𝑎))
87eleq1d 2816 . . . 4 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
9 funmpt 6519 . . . . 5 Fun (𝑎𝐴 ↦ -𝑎)
10 fundmfibi 9220 . . . . 5 (Fun (𝑎𝐴 ↦ -𝑎) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
119, 10mp1i 13 . . . 4 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
128, 11bitr4d 282 . . 3 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ (𝑎𝐴 ↦ -𝑎) ∈ Fin))
13 reex 11097 . . . . . 6 ℝ ∈ V
1413ssex 5257 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
1514mptexd 7158 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎) ∈ V)
16 eqid 2731 . . . . . 6 (𝑎𝐴 ↦ -𝑎) = (𝑎𝐴 ↦ -𝑎)
1716negf1o 11547 . . . . 5 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
18 f1of1 6762 . . . . 5 ((𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴} → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
1917, 18syl 17 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
20 f1vrnfibi 9226 . . . 4 (((𝑎𝐴 ↦ -𝑎) ∈ V ∧ (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴}) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
2115, 19, 20syl2anc 584 . . 3 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
221imp 406 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
232adantl 481 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → -𝑎 ∈ ℝ)
24 recn 11096 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
2524negnegd 11463 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → --𝑎 = 𝑎)
2625eqcomd 2737 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → 𝑎 = --𝑎)
2726eleq1d 2816 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (𝑎𝐴 ↔ --𝑎𝐴))
2827biimpcd 249 . . . . . . . . . . . 12 (𝑎𝐴 → (𝑎 ∈ ℝ → --𝑎𝐴))
2928adantl 481 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑎 ∈ ℝ → --𝑎𝐴))
3029imp 406 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → --𝑎𝐴)
3123, 30jca 511 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
3222, 31mpdan 687 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
33 eleq1 2819 . . . . . . . . 9 (𝑛 = -𝑎 → (𝑛 ∈ ℝ ↔ -𝑎 ∈ ℝ))
34 negeq 11352 . . . . . . . . . 10 (𝑛 = -𝑎 → -𝑛 = --𝑎)
3534eleq1d 2816 . . . . . . . . 9 (𝑛 = -𝑎 → (-𝑛𝐴 ↔ --𝑎𝐴))
3633, 35anbi12d 632 . . . . . . . 8 (𝑛 = -𝑎 → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝐴)))
3732, 36syl5ibrcom 247 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
38 simprr 772 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → -𝑛𝐴)
39 recn 11096 . . . . . . . . 9 (𝑛 ∈ ℝ → 𝑛 ∈ ℂ)
40 negneg 11411 . . . . . . . . . 10 (𝑛 ∈ ℂ → --𝑛 = 𝑛)
4140eqcomd 2737 . . . . . . . . 9 (𝑛 ∈ ℂ → 𝑛 = --𝑛)
4239, 41syl 17 . . . . . . . 8 (𝑛 ∈ ℝ → 𝑛 = --𝑛)
4342ad2antrl 728 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → 𝑛 = --𝑛)
44 negeq 11352 . . . . . . . 8 (𝑎 = -𝑛 → -𝑎 = --𝑛)
4544eqeq2d 2742 . . . . . . 7 (𝑎 = -𝑛 → (𝑛 = -𝑎𝑛 = --𝑛))
4637, 38, 43, 45rspceb2dv 3576 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 ↔ (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
4746abbidv 2797 . . . . 5 (𝐴 ⊆ ℝ → {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)})
4816rnmpt 5896 . . . . 5 ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎}
49 df-rab 3396 . . . . 5 {𝑛 ∈ ℝ ∣ -𝑛𝐴} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)}
5047, 48, 493eqtr4g 2791 . . . 4 (𝐴 ⊆ ℝ → ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∈ ℝ ∣ -𝑛𝐴})
5150eleq1d 2816 . . 3 (𝐴 ⊆ ℝ → (ran (𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5212, 21, 513bitrd 305 . 2 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5352biimpa 476 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  cmpt 5170  dom cdm 5614  ran crn 5615  Fun wfun 6475  1-1wf1 6478  1-1-ontowf1o 6480  Fincfn 8869  cc 11004  cr 11005  -cneg 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator