MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negfi Structured version   Visualization version   GIF version

Theorem negfi 11574
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
negfi ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem negfi
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3945 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑎𝐴𝑎 ∈ ℝ))
2 renegcl 10934 . . . . . . . . 9 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
31, 2syl6 35 . . . . . . . 8 (𝐴 ⊆ ℝ → (𝑎𝐴 → -𝑎 ∈ ℝ))
43ralrimiv 3175 . . . . . . 7 (𝐴 ⊆ ℝ → ∀𝑎𝐴 -𝑎 ∈ ℝ)
5 dmmptg 6077 . . . . . . 7 (∀𝑎𝐴 -𝑎 ∈ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
64, 5syl 17 . . . . . 6 (𝐴 ⊆ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
76eqcomd 2830 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 = dom (𝑎𝐴 ↦ -𝑎))
87eleq1d 2900 . . . 4 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
9 funmpt 6374 . . . . 5 Fun (𝑎𝐴 ↦ -𝑎)
10 fundmfibi 8787 . . . . 5 (Fun (𝑎𝐴 ↦ -𝑎) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
119, 10mp1i 13 . . . 4 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
128, 11bitr4d 285 . . 3 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ (𝑎𝐴 ↦ -𝑎) ∈ Fin))
13 reex 10613 . . . . . 6 ℝ ∈ V
1413ssex 5206 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
1514mptexd 6968 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎) ∈ V)
16 eqid 2824 . . . . . 6 (𝑎𝐴 ↦ -𝑎) = (𝑎𝐴 ↦ -𝑎)
1716negf1o 11055 . . . . 5 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
18 f1of1 6595 . . . . 5 ((𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴} → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
1917, 18syl 17 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
20 f1vrnfibi 8793 . . . 4 (((𝑎𝐴 ↦ -𝑎) ∈ V ∧ (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴}) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
2115, 19, 20syl2anc 587 . . 3 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
221imp 410 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
232adantl 485 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → -𝑎 ∈ ℝ)
24 recn 10612 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
2524negnegd 10973 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → --𝑎 = 𝑎)
2625eqcomd 2830 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → 𝑎 = --𝑎)
2726eleq1d 2900 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (𝑎𝐴 ↔ --𝑎𝐴))
2827biimpcd 252 . . . . . . . . . . . . 13 (𝑎𝐴 → (𝑎 ∈ ℝ → --𝑎𝐴))
2928adantl 485 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑎 ∈ ℝ → --𝑎𝐴))
3029imp 410 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → --𝑎𝐴)
3123, 30jca 515 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
3222, 31mpdan 686 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
33 eleq1 2903 . . . . . . . . . 10 (𝑛 = -𝑎 → (𝑛 ∈ ℝ ↔ -𝑎 ∈ ℝ))
34 negeq 10863 . . . . . . . . . . 11 (𝑛 = -𝑎 → -𝑛 = --𝑎)
3534eleq1d 2900 . . . . . . . . . 10 (𝑛 = -𝑎 → (-𝑛𝐴 ↔ --𝑎𝐴))
3633, 35anbi12d 633 . . . . . . . . 9 (𝑛 = -𝑎 → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝐴)))
3732, 36syl5ibrcom 250 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
3837rexlimdva 3276 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
39 simprr 772 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → -𝑛𝐴)
40 negeq 10863 . . . . . . . . . . 11 (𝑎 = -𝑛 → -𝑎 = --𝑛)
4140eqeq2d 2835 . . . . . . . . . 10 (𝑎 = -𝑛 → (𝑛 = -𝑎𝑛 = --𝑛))
4241adantl 485 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) ∧ 𝑎 = -𝑛) → (𝑛 = -𝑎𝑛 = --𝑛))
43 recn 10612 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 𝑛 ∈ ℂ)
44 negneg 10921 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → --𝑛 = 𝑛)
4544eqcomd 2830 . . . . . . . . . . 11 (𝑛 ∈ ℂ → 𝑛 = --𝑛)
4643, 45syl 17 . . . . . . . . . 10 (𝑛 ∈ ℝ → 𝑛 = --𝑛)
4746ad2antrl 727 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → 𝑛 = --𝑛)
4839, 42, 47rspcedvd 3611 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → ∃𝑎𝐴 𝑛 = -𝑎)
4948ex 416 . . . . . . 7 (𝐴 ⊆ ℝ → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) → ∃𝑎𝐴 𝑛 = -𝑎))
5038, 49impbid 215 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 ↔ (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
5150abbidv 2888 . . . . 5 (𝐴 ⊆ ℝ → {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)})
5216rnmpt 5808 . . . . 5 ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎}
53 df-rab 3141 . . . . 5 {𝑛 ∈ ℝ ∣ -𝑛𝐴} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)}
5451, 52, 533eqtr4g 2884 . . . 4 (𝐴 ⊆ ℝ → ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∈ ℝ ∣ -𝑛𝐴})
5554eleq1d 2900 . . 3 (𝐴 ⊆ ℝ → (ran (𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5612, 21, 553bitrd 308 . 2 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5756biimpa 480 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  {cab 2802  wral 3132  wrex 3133  {crab 3136  Vcvv 3479  wss 3918  cmpt 5127  dom cdm 5536  ran crn 5537  Fun wfun 6330  1-1wf1 6333  1-1-ontowf1o 6335  Fincfn 8492  cc 10520  cr 10521  -cneg 10856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10662  df-mnf 10663  df-ltxr 10665  df-sub 10857  df-neg 10858
This theorem is referenced by:  fiminreOLD  11575
  Copyright terms: Public domain W3C validator