Step | Hyp | Ref
| Expression |
1 | | ssel 3914 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ)) |
2 | | renegcl 11284 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℝ → -𝑎 ∈
ℝ) |
3 | 1, 2 | syl6 35 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 → -𝑎 ∈ ℝ)) |
4 | 3 | ralrimiv 3102 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
∀𝑎 ∈ 𝐴 -𝑎 ∈ ℝ) |
5 | | dmmptg 6145 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐴 -𝑎 ∈ ℝ → dom (𝑎 ∈ 𝐴 ↦ -𝑎) = 𝐴) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ → dom
(𝑎 ∈ 𝐴 ↦ -𝑎) = 𝐴) |
7 | 6 | eqcomd 2744 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → 𝐴 = dom (𝑎 ∈ 𝐴 ↦ -𝑎)) |
8 | 7 | eleq1d 2823 |
. . . 4
⊢ (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ dom (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
9 | | funmpt 6472 |
. . . . 5
⊢ Fun
(𝑎 ∈ 𝐴 ↦ -𝑎) |
10 | | fundmfibi 9098 |
. . . . 5
⊢ (Fun
(𝑎 ∈ 𝐴 ↦ -𝑎) → ((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
11 | 9, 10 | mp1i 13 |
. . . 4
⊢ (𝐴 ⊆ ℝ → ((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
12 | 8, 11 | bitr4d 281 |
. . 3
⊢ (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
13 | | reex 10962 |
. . . . . 6
⊢ ℝ
∈ V |
14 | 13 | ssex 5245 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
15 | 14 | mptexd 7100 |
. . . 4
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ V) |
16 | | eqid 2738 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 ↦ -𝑎) = (𝑎 ∈ 𝐴 ↦ -𝑎) |
17 | 16 | negf1o 11405 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}) |
18 | | f1of1 6715 |
. . . . 5
⊢ ((𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴} → (𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}) |
19 | 17, 18 | syl 17 |
. . . 4
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}) |
20 | | f1vrnfibi 9104 |
. . . 4
⊢ (((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ V ∧ (𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}) → ((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
21 | 15, 19, 20 | syl2anc 584 |
. . 3
⊢ (𝐴 ⊆ ℝ → ((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
22 | 1 | imp 407 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
23 | 2 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) ∧ 𝑎 ∈ ℝ) → -𝑎 ∈ ℝ) |
24 | | recn 10961 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ ℝ → 𝑎 ∈
ℂ) |
25 | 24 | negnegd 11323 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ ℝ → --𝑎 = 𝑎) |
26 | 25 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℝ → 𝑎 = --𝑎) |
27 | 26 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℝ → (𝑎 ∈ 𝐴 ↔ --𝑎 ∈ 𝐴)) |
28 | 27 | biimpcd 248 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝐴 → (𝑎 ∈ ℝ → --𝑎 ∈ 𝐴)) |
29 | 28 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) → (𝑎 ∈ ℝ → --𝑎 ∈ 𝐴)) |
30 | 29 | imp 407 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) ∧ 𝑎 ∈ ℝ) → --𝑎 ∈ 𝐴) |
31 | 23, 30 | jca 512 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) ∧ 𝑎 ∈ ℝ) → (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝐴)) |
32 | 22, 31 | mpdan 684 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) → (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝐴)) |
33 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑛 = -𝑎 → (𝑛 ∈ ℝ ↔ -𝑎 ∈ ℝ)) |
34 | | negeq 11213 |
. . . . . . . . . . 11
⊢ (𝑛 = -𝑎 → -𝑛 = --𝑎) |
35 | 34 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑛 = -𝑎 → (-𝑛 ∈ 𝐴 ↔ --𝑎 ∈ 𝐴)) |
36 | 33, 35 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑛 = -𝑎 → ((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ↔ (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝐴))) |
37 | 32, 36 | syl5ibrcom 246 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) → (𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴))) |
38 | 37 | rexlimdva 3213 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
(∃𝑎 ∈ 𝐴 𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴))) |
39 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) → -𝑛 ∈ 𝐴) |
40 | | negeq 11213 |
. . . . . . . . . . 11
⊢ (𝑎 = -𝑛 → -𝑎 = --𝑛) |
41 | 40 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑎 = -𝑛 → (𝑛 = -𝑎 ↔ 𝑛 = --𝑛)) |
42 | 41 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) ∧ 𝑎 = -𝑛) → (𝑛 = -𝑎 ↔ 𝑛 = --𝑛)) |
43 | | recn 10961 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℝ → 𝑛 ∈
ℂ) |
44 | | negneg 11271 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℂ → --𝑛 = 𝑛) |
45 | 44 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℂ → 𝑛 = --𝑛) |
46 | 43, 45 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ → 𝑛 = --𝑛) |
47 | 46 | ad2antrl 725 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) → 𝑛 = --𝑛) |
48 | 39, 42, 47 | rspcedvd 3563 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) → ∃𝑎 ∈ 𝐴 𝑛 = -𝑎) |
49 | 48 | ex 413 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ → ((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) → ∃𝑎 ∈ 𝐴 𝑛 = -𝑎)) |
50 | 38, 49 | impbid 211 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑎 ∈ 𝐴 𝑛 = -𝑎 ↔ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴))) |
51 | 50 | abbidv 2807 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → {𝑛 ∣ ∃𝑎 ∈ 𝐴 𝑛 = -𝑎} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)}) |
52 | 16 | rnmpt 5864 |
. . . . 5
⊢ ran
(𝑎 ∈ 𝐴 ↦ -𝑎) = {𝑛 ∣ ∃𝑎 ∈ 𝐴 𝑛 = -𝑎} |
53 | | df-rab 3073 |
. . . . 5
⊢ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)} |
54 | 51, 52, 53 | 3eqtr4g 2803 |
. . . 4
⊢ (𝐴 ⊆ ℝ → ran
(𝑎 ∈ 𝐴 ↦ -𝑎) = {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴}) |
55 | 54 | eleq1d 2823 |
. . 3
⊢ (𝐴 ⊆ ℝ → (ran
(𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin)) |
56 | 12, 21, 55 | 3bitrd 305 |
. 2
⊢ (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin)) |
57 | 56 | biimpa 477 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin) |