Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflcl Structured version   Visualization version   GIF version

Theorem lflcl 39050
Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflf.d 𝐷 = (Scalar‘𝑊)
lflf.k 𝐾 = (Base‘𝐷)
lflf.v 𝑉 = (Base‘𝑊)
lflf.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflcl ((𝑊𝑌𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)

Proof of Theorem lflcl
StepHypRef Expression
1 lflf.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lflf.k . . . 4 𝐾 = (Base‘𝐷)
3 lflf.v . . . 4 𝑉 = (Base‘𝑊)
4 lflf.f . . . 4 𝐹 = (LFnl‘𝑊)
51, 2, 3, 4lflf 39049 . . 3 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉𝐾)
653adant3 1132 . 2 ((𝑊𝑌𝐺𝐹𝑋𝑉) → 𝐺:𝑉𝐾)
7 simp3 1138 . 2 ((𝑊𝑌𝐺𝐹𝑋𝑉) → 𝑋𝑉)
86, 7ffvelcdmd 7039 1 ((𝑊𝑌𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wf 6495  cfv 6499  Basecbs 17155  Scalarcsca 17199  LFnlclfn 39043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-lfl 39044
This theorem is referenced by:  lfl0  39051  lfladd  39052  lflsub  39053  lflmul  39054  lfl1  39056  lfladdcl  39057  lflnegcl  39061  lflvscl  39063  lkrsc  39083  eqlkr  39085  eqlkr3  39087  lkrlsp  39088  ldualvsubval  39143  dochkr1  41465  dochkr1OLDN  41466  lcfl7lem  41486  lclkrlem2m  41506  lclkrlem2o  41508  lclkrlem2p  41509  lcfrlem1  41529  lcfrlem2  41530  lcfrlem3  41531  lcfrlem29  41558  lcfrlem31  41560  lcfrlem33  41562  lcdvbasecl  41583
  Copyright terms: Public domain W3C validator