![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflcl | Structured version Visualization version GIF version |
Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
Ref | Expression |
---|---|
lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lflcl | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflf.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | lflf.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
3 | lflf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lflf.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | 1, 2, 3, 4 | lflf 39045 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
6 | 5 | 3adant3 1131 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝐺:𝑉⟶𝐾) |
7 | simp3 1137 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
8 | 6, 7 | ffvelcdmd 7105 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⟶wf 6559 ‘cfv 6563 Basecbs 17245 Scalarcsca 17301 LFnlclfn 39039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-lfl 39040 |
This theorem is referenced by: lfl0 39047 lfladd 39048 lflsub 39049 lflmul 39050 lfl1 39052 lfladdcl 39053 lflnegcl 39057 lflvscl 39059 lkrsc 39079 eqlkr 39081 eqlkr3 39083 lkrlsp 39084 ldualvsubval 39139 dochkr1 41461 dochkr1OLDN 41462 lcfl7lem 41482 lclkrlem2m 41502 lclkrlem2o 41504 lclkrlem2p 41505 lcfrlem1 41525 lcfrlem2 41526 lcfrlem3 41527 lcfrlem29 41554 lcfrlem31 41556 lcfrlem33 41558 lcdvbasecl 41579 |
Copyright terms: Public domain | W3C validator |