| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflcl | Structured version Visualization version GIF version | ||
| Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lflcl | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflf.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | lflf.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
| 3 | lflf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lflf.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | 1, 2, 3, 4 | lflf 39081 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝐺:𝑉⟶𝐾) |
| 7 | simp3 1138 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 8 | 6, 7 | ffvelcdmd 7075 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⟶wf 6527 ‘cfv 6531 Basecbs 17228 Scalarcsca 17274 LFnlclfn 39075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-lfl 39076 |
| This theorem is referenced by: lfl0 39083 lfladd 39084 lflsub 39085 lflmul 39086 lfl1 39088 lfladdcl 39089 lflnegcl 39093 lflvscl 39095 lkrsc 39115 eqlkr 39117 eqlkr3 39119 lkrlsp 39120 ldualvsubval 39175 dochkr1 41497 dochkr1OLDN 41498 lcfl7lem 41518 lclkrlem2m 41538 lclkrlem2o 41540 lclkrlem2p 41541 lcfrlem1 41561 lcfrlem2 41562 lcfrlem3 41563 lcfrlem29 41590 lcfrlem31 41592 lcfrlem33 41594 lcdvbasecl 41615 |
| Copyright terms: Public domain | W3C validator |