Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflcl Structured version   Visualization version   GIF version

Theorem lflcl 39064
Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflf.d 𝐷 = (Scalar‘𝑊)
lflf.k 𝐾 = (Base‘𝐷)
lflf.v 𝑉 = (Base‘𝑊)
lflf.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflcl ((𝑊𝑌𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)

Proof of Theorem lflcl
StepHypRef Expression
1 lflf.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lflf.k . . . 4 𝐾 = (Base‘𝐷)
3 lflf.v . . . 4 𝑉 = (Base‘𝑊)
4 lflf.f . . . 4 𝐹 = (LFnl‘𝑊)
51, 2, 3, 4lflf 39063 . . 3 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉𝐾)
653adant3 1132 . 2 ((𝑊𝑌𝐺𝐹𝑋𝑉) → 𝐺:𝑉𝐾)
7 simp3 1138 . 2 ((𝑊𝑌𝐺𝐹𝑋𝑉) → 𝑋𝑉)
86, 7ffvelcdmd 7060 1 ((𝑊𝑌𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wf 6510  cfv 6514  Basecbs 17186  Scalarcsca 17230  LFnlclfn 39057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-lfl 39058
This theorem is referenced by:  lfl0  39065  lfladd  39066  lflsub  39067  lflmul  39068  lfl1  39070  lfladdcl  39071  lflnegcl  39075  lflvscl  39077  lkrsc  39097  eqlkr  39099  eqlkr3  39101  lkrlsp  39102  ldualvsubval  39157  dochkr1  41479  dochkr1OLDN  41480  lcfl7lem  41500  lclkrlem2m  41520  lclkrlem2o  41522  lclkrlem2p  41523  lcfrlem1  41543  lcfrlem2  41544  lcfrlem3  41545  lcfrlem29  41572  lcfrlem31  41574  lcfrlem33  41576  lcdvbasecl  41597
  Copyright terms: Public domain W3C validator