| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflcl | Structured version Visualization version GIF version | ||
| Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lflcl | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflf.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | lflf.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
| 3 | lflf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lflf.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | 1, 2, 3, 4 | lflf 39052 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝐺:𝑉⟶𝐾) |
| 7 | simp3 1138 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 8 | 6, 7 | ffvelcdmd 7019 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6478 ‘cfv 6482 Basecbs 17120 Scalarcsca 17164 LFnlclfn 39046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-lfl 39047 |
| This theorem is referenced by: lfl0 39054 lfladd 39055 lflsub 39056 lflmul 39057 lfl1 39059 lfladdcl 39060 lflnegcl 39064 lflvscl 39066 lkrsc 39086 eqlkr 39088 eqlkr3 39090 lkrlsp 39091 ldualvsubval 39146 dochkr1 41467 dochkr1OLDN 41468 lcfl7lem 41488 lclkrlem2m 41508 lclkrlem2o 41510 lclkrlem2p 41511 lcfrlem1 41531 lcfrlem2 41532 lcfrlem3 41533 lcfrlem29 41560 lcfrlem31 41562 lcfrlem33 41564 lcdvbasecl 41585 |
| Copyright terms: Public domain | W3C validator |