| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflcl | Structured version Visualization version GIF version | ||
| Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lflcl | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflf.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | lflf.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
| 3 | lflf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lflf.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | 1, 2, 3, 4 | lflf 39063 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝐺:𝑉⟶𝐾) |
| 7 | simp3 1138 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 8 | 6, 7 | ffvelcdmd 7060 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6510 ‘cfv 6514 Basecbs 17186 Scalarcsca 17230 LFnlclfn 39057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-lfl 39058 |
| This theorem is referenced by: lfl0 39065 lfladd 39066 lflsub 39067 lflmul 39068 lfl1 39070 lfladdcl 39071 lflnegcl 39075 lflvscl 39077 lkrsc 39097 eqlkr 39099 eqlkr3 39101 lkrlsp 39102 ldualvsubval 39157 dochkr1 41479 dochkr1OLDN 41480 lcfl7lem 41500 lclkrlem2m 41520 lclkrlem2o 41522 lclkrlem2p 41523 lcfrlem1 41543 lcfrlem2 41544 lcfrlem3 41545 lcfrlem29 41572 lcfrlem31 41574 lcfrlem33 41576 lcdvbasecl 41597 |
| Copyright terms: Public domain | W3C validator |