Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflcl | Structured version Visualization version GIF version |
Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
Ref | Expression |
---|---|
lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lflcl | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflf.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | lflf.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
3 | lflf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lflf.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | 1, 2, 3, 4 | lflf 37073 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
6 | 5 | 3adant3 1131 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝐺:𝑉⟶𝐾) |
7 | simp3 1137 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
8 | 6, 7 | ffvelrnd 6959 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ⟶wf 6428 ‘cfv 6432 Basecbs 16910 Scalarcsca 16963 LFnlclfn 37067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-map 8600 df-lfl 37068 |
This theorem is referenced by: lfl0 37075 lfladd 37076 lflsub 37077 lflmul 37078 lfl1 37080 lfladdcl 37081 lflnegcl 37085 lflvscl 37087 lkrsc 37107 eqlkr 37109 eqlkr3 37111 lkrlsp 37112 ldualvsubval 37167 dochkr1 39488 dochkr1OLDN 39489 lcfl7lem 39509 lclkrlem2m 39529 lclkrlem2o 39531 lclkrlem2p 39532 lcfrlem1 39552 lcfrlem2 39553 lcfrlem3 39554 lcfrlem29 39581 lcfrlem31 39583 lcfrlem33 39585 lcdvbasecl 39606 |
Copyright terms: Public domain | W3C validator |