| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflcl | Structured version Visualization version GIF version | ||
| Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lflcl | ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflf.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | lflf.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
| 3 | lflf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lflf.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | 1, 2, 3, 4 | lflf 39172 | . . 3 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝐺:𝑉⟶𝐾) |
| 7 | simp3 1138 | . 2 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 8 | 6, 7 | ffvelcdmd 7018 | 1 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⟶wf 6477 ‘cfv 6481 Basecbs 17120 Scalarcsca 17164 LFnlclfn 39166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-lfl 39167 |
| This theorem is referenced by: lfl0 39174 lfladd 39175 lflsub 39176 lflmul 39177 lfl1 39179 lfladdcl 39180 lflnegcl 39184 lflvscl 39186 lkrsc 39206 eqlkr 39208 eqlkr3 39210 lkrlsp 39211 ldualvsubval 39266 dochkr1 41587 dochkr1OLDN 41588 lcfl7lem 41608 lclkrlem2m 41628 lclkrlem2o 41630 lclkrlem2p 41631 lcfrlem1 41651 lcfrlem2 41652 lcfrlem3 41653 lcfrlem29 41680 lcfrlem31 41682 lcfrlem33 41684 lcdvbasecl 41705 |
| Copyright terms: Public domain | W3C validator |