Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflcl Structured version   Visualization version   GIF version

Theorem lflcl 35139
Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflf.d 𝐷 = (Scalar‘𝑊)
lflf.k 𝐾 = (Base‘𝐷)
lflf.v 𝑉 = (Base‘𝑊)
lflf.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflcl ((𝑊𝑌𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)

Proof of Theorem lflcl
StepHypRef Expression
1 lflf.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lflf.k . . . 4 𝐾 = (Base‘𝐷)
3 lflf.v . . . 4 𝑉 = (Base‘𝑊)
4 lflf.f . . . 4 𝐹 = (LFnl‘𝑊)
51, 2, 3, 4lflf 35138 . . 3 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉𝐾)
653adant3 1168 . 2 ((𝑊𝑌𝐺𝐹𝑋𝑉) → 𝐺:𝑉𝐾)
7 simp3 1174 . 2 ((𝑊𝑌𝐺𝐹𝑋𝑉) → 𝑋𝑉)
86, 7ffvelrnd 6609 1 ((𝑊𝑌𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1113   = wceq 1658  wcel 2166  wf 6119  cfv 6123  Basecbs 16222  Scalarcsca 16308  LFnlclfn 35132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-map 8124  df-lfl 35133
This theorem is referenced by:  lfl0  35140  lfladd  35141  lflsub  35142  lflmul  35143  lfl1  35145  lfladdcl  35146  lflnegcl  35150  lflvscl  35152  lkrsc  35172  eqlkr  35174  eqlkr3  35176  lkrlsp  35177  ldualvsubval  35232  dochkr1  37553  dochkr1OLDN  37554  lcfl7lem  37574  lclkrlem2m  37594  lclkrlem2o  37596  lclkrlem2p  37597  lcfrlem1  37617  lcfrlem2  37618  lcfrlem3  37619  lcfrlem29  37646  lcfrlem31  37648  lcfrlem33  37650  lcdvbasecl  37671
  Copyright terms: Public domain W3C validator