| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvaddval | Structured version Visualization version GIF version | ||
| Description: The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| ldualvaddval.v | ⊢ 𝑉 = (Base‘𝑊) |
| ldualvaddval.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualvaddval.a | ⊢ + = (+g‘𝑅) |
| ldualvaddval.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvaddval.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvaddval.p | ⊢ ✚ = (+g‘𝐷) |
| ldualvaddval.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ldualvaddval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| ldualvaddval.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| ldualvaddval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ldualvaddval | ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualvaddval.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 2 | ldualvaddval.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 3 | ldualvaddval.a | . . . 4 ⊢ + = (+g‘𝑅) | |
| 4 | ldualvaddval.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 5 | ldualvaddval.p | . . . 4 ⊢ ✚ = (+g‘𝐷) | |
| 6 | ldualvaddval.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 7 | ldualvaddval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 8 | ldualvaddval.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | ldualvadd 39064 | . . 3 ⊢ (𝜑 → (𝐺 ✚ 𝐻) = (𝐺 ∘f + 𝐻)) |
| 10 | 9 | fveq1d 6887 | . 2 ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺 ∘f + 𝐻)‘𝑋)) |
| 11 | ldualvaddval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 12 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 13 | ldualvaddval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 14 | 2, 12, 13, 1 | lflf 38998 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
| 15 | 14 | ffnd 6716 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) |
| 16 | 6, 7, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
| 17 | 2, 12, 13, 1 | lflf 38998 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶(Base‘𝑅)) |
| 18 | 17 | ffnd 6716 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻 Fn 𝑉) |
| 19 | 6, 8, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐻 Fn 𝑉) |
| 20 | 13 | fvexi 6899 | . . . . 5 ⊢ 𝑉 ∈ V |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
| 22 | inidm 4207 | . . . 4 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
| 23 | eqidd 2735 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) = (𝐺‘𝑋)) | |
| 24 | eqidd 2735 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝐻‘𝑋) = (𝐻‘𝑋)) | |
| 25 | 16, 19, 21, 21, 22, 23, 24 | ofval 7689 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((𝐺 ∘f + 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
| 26 | 11, 25 | mpdan 687 | . 2 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
| 27 | 10, 26 | eqtrd 2769 | 1 ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 Fn wfn 6535 ‘cfv 6540 (class class class)co 7412 ∘f cof 7676 Basecbs 17228 +gcplusg 17272 Scalarcsca 17275 LModclmod 20825 LFnlclfn 38992 LDualcld 39058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-n0 12509 df-z 12596 df-uz 12860 df-fz 13529 df-struct 17165 df-slot 17200 df-ndx 17212 df-base 17229 df-plusg 17285 df-sca 17288 df-vsca 17289 df-lfl 38993 df-ldual 39059 |
| This theorem is referenced by: ldualvsubval 39092 lkrin 39099 lcdvaddval 41534 |
| Copyright terms: Public domain | W3C validator |