![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvaddval | Structured version Visualization version GIF version |
Description: The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
ldualvaddval.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualvaddval.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvaddval.a | ⊢ + = (+g‘𝑅) |
ldualvaddval.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvaddval.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvaddval.p | ⊢ ✚ = (+g‘𝐷) |
ldualvaddval.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ldualvaddval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
ldualvaddval.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
ldualvaddval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
ldualvaddval | ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvaddval.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | ldualvaddval.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
3 | ldualvaddval.a | . . . 4 ⊢ + = (+g‘𝑅) | |
4 | ldualvaddval.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
5 | ldualvaddval.p | . . . 4 ⊢ ✚ = (+g‘𝐷) | |
6 | ldualvaddval.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
7 | ldualvaddval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
8 | ldualvaddval.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ldualvadd 37404 | . . 3 ⊢ (𝜑 → (𝐺 ✚ 𝐻) = (𝐺 ∘f + 𝐻)) |
10 | 9 | fveq1d 6827 | . 2 ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺 ∘f + 𝐻)‘𝑋)) |
11 | ldualvaddval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
12 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | ldualvaddval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
14 | 2, 12, 13, 1 | lflf 37338 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
15 | 14 | ffnd 6652 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) |
16 | 6, 7, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
17 | 2, 12, 13, 1 | lflf 37338 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶(Base‘𝑅)) |
18 | 17 | ffnd 6652 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻 Fn 𝑉) |
19 | 6, 8, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐻 Fn 𝑉) |
20 | 13 | fvexi 6839 | . . . . 5 ⊢ 𝑉 ∈ V |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
22 | inidm 4165 | . . . 4 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
23 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) = (𝐺‘𝑋)) | |
24 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝐻‘𝑋) = (𝐻‘𝑋)) | |
25 | 16, 19, 21, 21, 22, 23, 24 | ofval 7606 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((𝐺 ∘f + 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
26 | 11, 25 | mpdan 684 | . 2 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
27 | 10, 26 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 Fn wfn 6474 ‘cfv 6479 (class class class)co 7337 ∘f cof 7593 Basecbs 17009 +gcplusg 17059 Scalarcsca 17062 LModclmod 20229 LFnlclfn 37332 LDualcld 37398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-struct 16945 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-sca 17075 df-vsca 17076 df-lfl 37333 df-ldual 37399 |
This theorem is referenced by: ldualvsubval 37432 lkrin 37439 lcdvaddval 39874 |
Copyright terms: Public domain | W3C validator |