Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvaddval Structured version   Visualization version   GIF version

Theorem ldualvaddval 39036
Description: The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
ldualvaddval.v 𝑉 = (Base‘𝑊)
ldualvaddval.r 𝑅 = (Scalar‘𝑊)
ldualvaddval.a + = (+g𝑅)
ldualvaddval.f 𝐹 = (LFnl‘𝑊)
ldualvaddval.d 𝐷 = (LDual‘𝑊)
ldualvaddval.p = (+g𝐷)
ldualvaddval.w (𝜑𝑊 ∈ LMod)
ldualvaddval.g (𝜑𝐺𝐹)
ldualvaddval.h (𝜑𝐻𝐹)
ldualvaddval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ldualvaddval (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋) + (𝐻𝑋)))

Proof of Theorem ldualvaddval
StepHypRef Expression
1 ldualvaddval.f . . . 4 𝐹 = (LFnl‘𝑊)
2 ldualvaddval.r . . . 4 𝑅 = (Scalar‘𝑊)
3 ldualvaddval.a . . . 4 + = (+g𝑅)
4 ldualvaddval.d . . . 4 𝐷 = (LDual‘𝑊)
5 ldualvaddval.p . . . 4 = (+g𝐷)
6 ldualvaddval.w . . . 4 (𝜑𝑊 ∈ LMod)
7 ldualvaddval.g . . . 4 (𝜑𝐺𝐹)
8 ldualvaddval.h . . . 4 (𝜑𝐻𝐹)
91, 2, 3, 4, 5, 6, 7, 8ldualvadd 39034 . . 3 (𝜑 → (𝐺 𝐻) = (𝐺f + 𝐻))
109fveq1d 6921 . 2 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺f + 𝐻)‘𝑋))
11 ldualvaddval.x . . 3 (𝜑𝑋𝑉)
12 eqid 2734 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
13 ldualvaddval.v . . . . . . 7 𝑉 = (Base‘𝑊)
142, 12, 13, 1lflf 38968 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
1514ffnd 6747 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
166, 7, 15syl2anc 583 . . . 4 (𝜑𝐺 Fn 𝑉)
172, 12, 13, 1lflf 38968 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:𝑉⟶(Base‘𝑅))
1817ffnd 6747 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻 Fn 𝑉)
196, 8, 18syl2anc 583 . . . 4 (𝜑𝐻 Fn 𝑉)
2013fvexi 6933 . . . . 5 𝑉 ∈ V
2120a1i 11 . . . 4 (𝜑𝑉 ∈ V)
22 inidm 4242 . . . 4 (𝑉𝑉) = 𝑉
23 eqidd 2735 . . . 4 ((𝜑𝑋𝑉) → (𝐺𝑋) = (𝐺𝑋))
24 eqidd 2735 . . . 4 ((𝜑𝑋𝑉) → (𝐻𝑋) = (𝐻𝑋))
2516, 19, 21, 21, 22, 23, 24ofval 7721 . . 3 ((𝜑𝑋𝑉) → ((𝐺f + 𝐻)‘𝑋) = ((𝐺𝑋) + (𝐻𝑋)))
2611, 25mpdan 686 . 2 (𝜑 → ((𝐺f + 𝐻)‘𝑋) = ((𝐺𝑋) + (𝐻𝑋)))
2710, 26eqtrd 2774 1 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋) + (𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2103  Vcvv 3482   Fn wfn 6567  cfv 6572  (class class class)co 7445  f cof 7708  Basecbs 17253  +gcplusg 17306  Scalarcsca 17309  LModclmod 20875  LFnlclfn 38962  LDualcld 39028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-map 8882  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-n0 12550  df-z 12636  df-uz 12900  df-fz 13564  df-struct 17189  df-slot 17224  df-ndx 17236  df-base 17254  df-plusg 17319  df-sca 17322  df-vsca 17323  df-lfl 38963  df-ldual 39029
This theorem is referenced by:  ldualvsubval  39062  lkrin  39069  lcdvaddval  41504
  Copyright terms: Public domain W3C validator