![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvaddval | Structured version Visualization version GIF version |
Description: The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
ldualvaddval.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualvaddval.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvaddval.a | ⊢ + = (+g‘𝑅) |
ldualvaddval.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvaddval.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvaddval.p | ⊢ ✚ = (+g‘𝐷) |
ldualvaddval.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ldualvaddval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
ldualvaddval.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
ldualvaddval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
ldualvaddval | ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvaddval.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | ldualvaddval.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
3 | ldualvaddval.a | . . . 4 ⊢ + = (+g‘𝑅) | |
4 | ldualvaddval.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
5 | ldualvaddval.p | . . . 4 ⊢ ✚ = (+g‘𝐷) | |
6 | ldualvaddval.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
7 | ldualvaddval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
8 | ldualvaddval.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ldualvadd 39125 | . . 3 ⊢ (𝜑 → (𝐺 ✚ 𝐻) = (𝐺 ∘f + 𝐻)) |
10 | 9 | fveq1d 6916 | . 2 ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺 ∘f + 𝐻)‘𝑋)) |
11 | ldualvaddval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
12 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | ldualvaddval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
14 | 2, 12, 13, 1 | lflf 39059 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
15 | 14 | ffnd 6745 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) |
16 | 6, 7, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
17 | 2, 12, 13, 1 | lflf 39059 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶(Base‘𝑅)) |
18 | 17 | ffnd 6745 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻 Fn 𝑉) |
19 | 6, 8, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐻 Fn 𝑉) |
20 | 13 | fvexi 6928 | . . . . 5 ⊢ 𝑉 ∈ V |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
22 | inidm 4238 | . . . 4 ⊢ (𝑉 ∩ 𝑉) = 𝑉 | |
23 | eqidd 2738 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) = (𝐺‘𝑋)) | |
24 | eqidd 2738 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → (𝐻‘𝑋) = (𝐻‘𝑋)) | |
25 | 16, 19, 21, 21, 22, 23, 24 | ofval 7715 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑉) → ((𝐺 ∘f + 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
26 | 11, 25 | mpdan 687 | . 2 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
27 | 10, 26 | eqtrd 2777 | 1 ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 Fn wfn 6564 ‘cfv 6569 (class class class)co 7438 ∘f cof 7702 Basecbs 17254 +gcplusg 17307 Scalarcsca 17310 LModclmod 20884 LFnlclfn 39053 LDualcld 39119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-struct 17190 df-slot 17225 df-ndx 17237 df-base 17255 df-plusg 17320 df-sca 17323 df-vsca 17324 df-lfl 39054 df-ldual 39120 |
This theorem is referenced by: ldualvsubval 39153 lkrin 39160 lcdvaddval 41595 |
Copyright terms: Public domain | W3C validator |