Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvaddval Structured version   Visualization version   GIF version

Theorem ldualvaddval 39066
Description: The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
ldualvaddval.v 𝑉 = (Base‘𝑊)
ldualvaddval.r 𝑅 = (Scalar‘𝑊)
ldualvaddval.a + = (+g𝑅)
ldualvaddval.f 𝐹 = (LFnl‘𝑊)
ldualvaddval.d 𝐷 = (LDual‘𝑊)
ldualvaddval.p = (+g𝐷)
ldualvaddval.w (𝜑𝑊 ∈ LMod)
ldualvaddval.g (𝜑𝐺𝐹)
ldualvaddval.h (𝜑𝐻𝐹)
ldualvaddval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ldualvaddval (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋) + (𝐻𝑋)))

Proof of Theorem ldualvaddval
StepHypRef Expression
1 ldualvaddval.f . . . 4 𝐹 = (LFnl‘𝑊)
2 ldualvaddval.r . . . 4 𝑅 = (Scalar‘𝑊)
3 ldualvaddval.a . . . 4 + = (+g𝑅)
4 ldualvaddval.d . . . 4 𝐷 = (LDual‘𝑊)
5 ldualvaddval.p . . . 4 = (+g𝐷)
6 ldualvaddval.w . . . 4 (𝜑𝑊 ∈ LMod)
7 ldualvaddval.g . . . 4 (𝜑𝐺𝐹)
8 ldualvaddval.h . . . 4 (𝜑𝐻𝐹)
91, 2, 3, 4, 5, 6, 7, 8ldualvadd 39064 . . 3 (𝜑 → (𝐺 𝐻) = (𝐺f + 𝐻))
109fveq1d 6887 . 2 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺f + 𝐻)‘𝑋))
11 ldualvaddval.x . . 3 (𝜑𝑋𝑉)
12 eqid 2734 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
13 ldualvaddval.v . . . . . . 7 𝑉 = (Base‘𝑊)
142, 12, 13, 1lflf 38998 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
1514ffnd 6716 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
166, 7, 15syl2anc 584 . . . 4 (𝜑𝐺 Fn 𝑉)
172, 12, 13, 1lflf 38998 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:𝑉⟶(Base‘𝑅))
1817ffnd 6716 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻 Fn 𝑉)
196, 8, 18syl2anc 584 . . . 4 (𝜑𝐻 Fn 𝑉)
2013fvexi 6899 . . . . 5 𝑉 ∈ V
2120a1i 11 . . . 4 (𝜑𝑉 ∈ V)
22 inidm 4207 . . . 4 (𝑉𝑉) = 𝑉
23 eqidd 2735 . . . 4 ((𝜑𝑋𝑉) → (𝐺𝑋) = (𝐺𝑋))
24 eqidd 2735 . . . 4 ((𝜑𝑋𝑉) → (𝐻𝑋) = (𝐻𝑋))
2516, 19, 21, 21, 22, 23, 24ofval 7689 . . 3 ((𝜑𝑋𝑉) → ((𝐺f + 𝐻)‘𝑋) = ((𝐺𝑋) + (𝐻𝑋)))
2611, 25mpdan 687 . 2 (𝜑 → ((𝐺f + 𝐻)‘𝑋) = ((𝐺𝑋) + (𝐻𝑋)))
2710, 26eqtrd 2769 1 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋) + (𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463   Fn wfn 6535  cfv 6540  (class class class)co 7412  f cof 7676  Basecbs 17228  +gcplusg 17272  Scalarcsca 17275  LModclmod 20825  LFnlclfn 38992  LDualcld 39058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-n0 12509  df-z 12596  df-uz 12860  df-fz 13529  df-struct 17165  df-slot 17200  df-ndx 17212  df-base 17229  df-plusg 17285  df-sca 17288  df-vsca 17289  df-lfl 38993  df-ldual 39059
This theorem is referenced by:  ldualvsubval  39092  lkrin  39099  lcdvaddval  41534
  Copyright terms: Public domain W3C validator