Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnric | Structured version Visualization version GIF version |
Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) |
Ref | Expression |
---|---|
islpln2a.l | ⊢ ≤ = (le‘𝐾) |
islpln2a.j | ⊢ ∨ = (join‘𝐾) |
islpln2a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islpln2a.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
islpln2a.y | ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) |
Ref | Expression |
---|---|
lplnric | ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpln2a.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | islpln2a.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | islpln2a.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | islpln2a.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
5 | islpln2a.y | . . . 4 ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) | |
6 | 1, 2, 3, 4, 5 | islpln2ah 37151 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑌 ∈ 𝑃 ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
7 | 6 | biimp3a 1466 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
8 | 7 | simprd 499 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5035 ‘cfv 6339 (class class class)co 7155 lecple 16635 joincjn 17625 Atomscatm 36865 HLchlt 36952 LPlanesclpl 37094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-proset 17609 df-poset 17627 df-plt 17639 df-lub 17655 df-glb 17656 df-join 17657 df-meet 17658 df-p0 17720 df-lat 17727 df-clat 17789 df-oposet 36778 df-ol 36780 df-oml 36781 df-covers 36868 df-ats 36869 df-atl 36900 df-cvlat 36924 df-hlat 36953 df-llines 37100 df-lplanes 37101 |
This theorem is referenced by: dalem3 37266 |
Copyright terms: Public domain | W3C validator |