![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncnvat | Structured version Visualization version GIF version |
Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 9-May-2013.) |
Ref | Expression |
---|---|
ltrnel.l | β’ β€ = (leβπΎ) |
ltrnel.a | β’ π΄ = (AtomsβπΎ) |
ltrnel.h | β’ π» = (LHypβπΎ) |
ltrnel.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrncnvat | β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (β‘πΉβπ) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β π β π΄) | |
2 | eqid 2725 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | ltrnel.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | atbase 38817 | . . 3 β’ (π β π΄ β π β (BaseβπΎ)) |
5 | ltrnel.h | . . . 4 β’ π» = (LHypβπΎ) | |
6 | ltrnel.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
7 | 2, 3, 5, 6 | ltrncnvatb 39667 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β (BaseβπΎ)) β (π β π΄ β (β‘πΉβπ) β π΄)) |
8 | 4, 7 | syl3an3 1162 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (π β π΄ β (β‘πΉβπ) β π΄)) |
9 | 1, 8 | mpbid 231 | 1 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (β‘πΉβπ) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β‘ccnv 5671 βcfv 6543 Basecbs 17179 lecple 17239 Atomscatm 38791 HLchlt 38878 LHypclh 39513 LTrncltrn 39630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-map 8845 df-plt 18321 df-glb 18338 df-p0 18416 df-oposet 38704 df-ol 38706 df-oml 38707 df-covers 38794 df-ats 38795 df-hlat 38879 df-lhyp 39517 df-laut 39518 df-ldil 39633 df-ltrn 39634 |
This theorem is referenced by: ltrncnvel 39671 ltrncnv 39675 ltrneq2 39677 cdlemg17h 40197 |
Copyright terms: Public domain | W3C validator |