Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version GIF version |
Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 38080 uses. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
ltrnel.l | ⊢ ≤ = (le‘𝐾) |
ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37230 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | ltrnel.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | ltrnel.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | 2, 3, 5, 6 | ltrnatb 38078 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
8 | 4, 7 | syl3an3 1163 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
9 | 1, 8 | mpbid 231 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 lecple 16895 Atomscatm 37204 HLchlt 37291 LHypclh 37925 LTrncltrn 38042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-plt 17963 df-glb 17980 df-p0 18058 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-hlat 37292 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 |
This theorem is referenced by: ltrncoat 38085 trlcnv 38106 trljat2 38108 trlat 38110 trlval3 38128 trlval4 38129 cdlemc3 38134 cdlemc5 38136 cdlemg2kq 38543 cdlemg9a 38573 cdlemg9 38575 cdlemg10bALTN 38577 cdlemg10c 38580 cdlemg10a 38581 cdlemg10 38582 cdlemg12a 38584 cdlemg12c 38586 cdlemg13a 38592 cdlemg17a 38602 cdlemg17g 38608 cdlemg18a 38619 cdlemg18b 38620 cdlemg18c 38621 trlcoabs2N 38663 trlcolem 38667 cdlemg42 38670 cdlemi 38761 cdlemk3 38774 cdlemk4 38775 cdlemk6 38778 cdlemk9 38780 cdlemk9bN 38781 cdlemk10 38784 cdlemksat 38787 cdlemk7 38789 cdlemk12 38791 cdlemkole 38794 cdlemk14 38795 cdlemk15 38796 cdlemk17 38799 cdlemk5u 38802 cdlemk6u 38803 cdlemkuat 38807 cdlemk7u 38811 cdlemk12u 38813 cdlemk37 38855 cdlemk39 38857 cdlemkfid1N 38862 cdlemk47 38890 cdlemk48 38891 cdlemk50 38893 cdlemk51 38894 cdlemk52 38895 cdlemm10N 39059 |
Copyright terms: Public domain | W3C validator |