Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnat Structured version   Visualization version   GIF version

Theorem ltrnat 40159
Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 40158 uses. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)

Proof of Theorem ltrnat
StepHypRef Expression
1 simp3 1138 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → 𝑃𝐴)
2 eqid 2735 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 ltrnel.a . . . 4 𝐴 = (Atoms‘𝐾)
42, 3atbase 39307 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
5 ltrnel.h . . . 4 𝐻 = (LHyp‘𝐾)
6 ltrnel.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
72, 3, 5, 6ltrnatb 40156 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
84, 7syl3an3 1165 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
91, 8mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  Basecbs 17228  lecple 17278  Atomscatm 39281  HLchlt 39368  LHypclh 40003  LTrncltrn 40120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-plt 18340  df-glb 18357  df-p0 18435  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-hlat 39369  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124
This theorem is referenced by:  ltrncoat  40163  trlcnv  40184  trljat2  40186  trlat  40188  trlval3  40206  trlval4  40207  cdlemc3  40212  cdlemc5  40214  cdlemg2kq  40621  cdlemg9a  40651  cdlemg9  40653  cdlemg10bALTN  40655  cdlemg10c  40658  cdlemg10a  40659  cdlemg10  40660  cdlemg12a  40662  cdlemg12c  40664  cdlemg13a  40670  cdlemg17a  40680  cdlemg17g  40686  cdlemg18a  40697  cdlemg18b  40698  cdlemg18c  40699  trlcoabs2N  40741  trlcolem  40745  cdlemg42  40748  cdlemi  40839  cdlemk3  40852  cdlemk4  40853  cdlemk6  40856  cdlemk9  40858  cdlemk9bN  40859  cdlemk10  40862  cdlemksat  40865  cdlemk7  40867  cdlemk12  40869  cdlemkole  40872  cdlemk14  40873  cdlemk15  40874  cdlemk17  40877  cdlemk5u  40880  cdlemk6u  40881  cdlemkuat  40885  cdlemk7u  40889  cdlemk12u  40891  cdlemk37  40933  cdlemk39  40935  cdlemkfid1N  40940  cdlemk47  40968  cdlemk48  40969  cdlemk50  40971  cdlemk51  40972  cdlemk52  40973  cdlemm10N  41137
  Copyright terms: Public domain W3C validator