![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version GIF version |
Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 39313 uses. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
ltrnel.l | β’ β€ = (leβπΎ) |
ltrnel.a | β’ π΄ = (AtomsβπΎ) |
ltrnel.h | β’ π» = (LHypβπΎ) |
ltrnel.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrnat | β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (πΉβπ) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β π β π΄) | |
2 | eqid 2730 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | ltrnel.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | atbase 38462 | . . 3 β’ (π β π΄ β π β (BaseβπΎ)) |
5 | ltrnel.h | . . . 4 β’ π» = (LHypβπΎ) | |
6 | ltrnel.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
7 | 2, 3, 5, 6 | ltrnatb 39311 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β (BaseβπΎ)) β (π β π΄ β (πΉβπ) β π΄)) |
8 | 4, 7 | syl3an3 1163 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (π β π΄ β (πΉβπ) β π΄)) |
9 | 1, 8 | mpbid 231 | 1 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΄) β (πΉβπ) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βcfv 6542 Basecbs 17148 lecple 17208 Atomscatm 38436 HLchlt 38523 LHypclh 39158 LTrncltrn 39275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-plt 18287 df-glb 18304 df-p0 18382 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-hlat 38524 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 |
This theorem is referenced by: ltrncoat 39318 trlcnv 39339 trljat2 39341 trlat 39343 trlval3 39361 trlval4 39362 cdlemc3 39367 cdlemc5 39369 cdlemg2kq 39776 cdlemg9a 39806 cdlemg9 39808 cdlemg10bALTN 39810 cdlemg10c 39813 cdlemg10a 39814 cdlemg10 39815 cdlemg12a 39817 cdlemg12c 39819 cdlemg13a 39825 cdlemg17a 39835 cdlemg17g 39841 cdlemg18a 39852 cdlemg18b 39853 cdlemg18c 39854 trlcoabs2N 39896 trlcolem 39900 cdlemg42 39903 cdlemi 39994 cdlemk3 40007 cdlemk4 40008 cdlemk6 40011 cdlemk9 40013 cdlemk9bN 40014 cdlemk10 40017 cdlemksat 40020 cdlemk7 40022 cdlemk12 40024 cdlemkole 40027 cdlemk14 40028 cdlemk15 40029 cdlemk17 40032 cdlemk5u 40035 cdlemk6u 40036 cdlemkuat 40040 cdlemk7u 40044 cdlemk12u 40046 cdlemk37 40088 cdlemk39 40090 cdlemkfid1N 40095 cdlemk47 40123 cdlemk48 40124 cdlemk50 40126 cdlemk51 40127 cdlemk52 40128 cdlemm10N 40292 |
Copyright terms: Public domain | W3C validator |