| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version GIF version | ||
| Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 40261 uses. (Contributed by NM, 25-May-2012.) |
| Ref | Expression |
|---|---|
| ltrnel.l | ⊢ ≤ = (le‘𝐾) |
| ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39411 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 5 | ltrnel.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | ltrnel.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 7 | 2, 3, 5, 6 | ltrnatb 40259 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 8 | 4, 7 | syl3an3 1165 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 Basecbs 17124 lecple 17172 Atomscatm 39385 HLchlt 39472 LHypclh 40106 LTrncltrn 40223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-map 8760 df-plt 18238 df-glb 18255 df-p0 18333 df-oposet 39298 df-ol 39300 df-oml 39301 df-covers 39388 df-ats 39389 df-hlat 39473 df-lhyp 40110 df-laut 40111 df-ldil 40226 df-ltrn 40227 |
| This theorem is referenced by: ltrncoat 40266 trlcnv 40287 trljat2 40289 trlat 40291 trlval3 40309 trlval4 40310 cdlemc3 40315 cdlemc5 40317 cdlemg2kq 40724 cdlemg9a 40754 cdlemg9 40756 cdlemg10bALTN 40758 cdlemg10c 40761 cdlemg10a 40762 cdlemg10 40763 cdlemg12a 40765 cdlemg12c 40767 cdlemg13a 40773 cdlemg17a 40783 cdlemg17g 40789 cdlemg18a 40800 cdlemg18b 40801 cdlemg18c 40802 trlcoabs2N 40844 trlcolem 40848 cdlemg42 40851 cdlemi 40942 cdlemk3 40955 cdlemk4 40956 cdlemk6 40959 cdlemk9 40961 cdlemk9bN 40962 cdlemk10 40965 cdlemksat 40968 cdlemk7 40970 cdlemk12 40972 cdlemkole 40975 cdlemk14 40976 cdlemk15 40977 cdlemk17 40980 cdlemk5u 40983 cdlemk6u 40984 cdlemkuat 40988 cdlemk7u 40992 cdlemk12u 40994 cdlemk37 41036 cdlemk39 41038 cdlemkfid1N 41043 cdlemk47 41071 cdlemk48 41072 cdlemk50 41074 cdlemk51 41075 cdlemk52 41076 cdlemm10N 41240 |
| Copyright terms: Public domain | W3C validator |