Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnat Structured version   Visualization version   GIF version

Theorem ltrnat 37891
Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 37890 uses. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)

Proof of Theorem ltrnat
StepHypRef Expression
1 simp3 1140 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → 𝑃𝐴)
2 eqid 2737 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 ltrnel.a . . . 4 𝐴 = (Atoms‘𝐾)
42, 3atbase 37040 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
5 ltrnel.h . . . 4 𝐻 = (LHyp‘𝐾)
6 ltrnel.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
72, 3, 5, 6ltrnatb 37888 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
84, 7syl3an3 1167 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
91, 8mpbid 235 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  Basecbs 16760  lecple 16809  Atomscatm 37014  HLchlt 37101  LHypclh 37735  LTrncltrn 37852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-plt 17836  df-glb 17853  df-p0 17931  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-hlat 37102  df-lhyp 37739  df-laut 37740  df-ldil 37855  df-ltrn 37856
This theorem is referenced by:  ltrncoat  37895  trlcnv  37916  trljat2  37918  trlat  37920  trlval3  37938  trlval4  37939  cdlemc3  37944  cdlemc5  37946  cdlemg2kq  38353  cdlemg9a  38383  cdlemg9  38385  cdlemg10bALTN  38387  cdlemg10c  38390  cdlemg10a  38391  cdlemg10  38392  cdlemg12a  38394  cdlemg12c  38396  cdlemg13a  38402  cdlemg17a  38412  cdlemg17g  38418  cdlemg18a  38429  cdlemg18b  38430  cdlemg18c  38431  trlcoabs2N  38473  trlcolem  38477  cdlemg42  38480  cdlemi  38571  cdlemk3  38584  cdlemk4  38585  cdlemk6  38588  cdlemk9  38590  cdlemk9bN  38591  cdlemk10  38594  cdlemksat  38597  cdlemk7  38599  cdlemk12  38601  cdlemkole  38604  cdlemk14  38605  cdlemk15  38606  cdlemk17  38609  cdlemk5u  38612  cdlemk6u  38613  cdlemkuat  38617  cdlemk7u  38621  cdlemk12u  38623  cdlemk37  38665  cdlemk39  38667  cdlemkfid1N  38672  cdlemk47  38700  cdlemk48  38701  cdlemk50  38703  cdlemk51  38704  cdlemk52  38705  cdlemm10N  38869
  Copyright terms: Public domain W3C validator