Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version GIF version |
Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 37890 uses. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
ltrnel.l | ⊢ ≤ = (le‘𝐾) |
ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1140 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
2 | eqid 2737 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37040 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | ltrnel.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | ltrnel.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | 2, 3, 5, 6 | ltrnatb 37888 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
8 | 4, 7 | syl3an3 1167 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
9 | 1, 8 | mpbid 235 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 Basecbs 16760 lecple 16809 Atomscatm 37014 HLchlt 37101 LHypclh 37735 LTrncltrn 37852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-plt 17836 df-glb 17853 df-p0 17931 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-hlat 37102 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 |
This theorem is referenced by: ltrncoat 37895 trlcnv 37916 trljat2 37918 trlat 37920 trlval3 37938 trlval4 37939 cdlemc3 37944 cdlemc5 37946 cdlemg2kq 38353 cdlemg9a 38383 cdlemg9 38385 cdlemg10bALTN 38387 cdlemg10c 38390 cdlemg10a 38391 cdlemg10 38392 cdlemg12a 38394 cdlemg12c 38396 cdlemg13a 38402 cdlemg17a 38412 cdlemg17g 38418 cdlemg18a 38429 cdlemg18b 38430 cdlemg18c 38431 trlcoabs2N 38473 trlcolem 38477 cdlemg42 38480 cdlemi 38571 cdlemk3 38584 cdlemk4 38585 cdlemk6 38588 cdlemk9 38590 cdlemk9bN 38591 cdlemk10 38594 cdlemksat 38597 cdlemk7 38599 cdlemk12 38601 cdlemkole 38604 cdlemk14 38605 cdlemk15 38606 cdlemk17 38609 cdlemk5u 38612 cdlemk6u 38613 cdlemkuat 38617 cdlemk7u 38621 cdlemk12u 38623 cdlemk37 38665 cdlemk39 38667 cdlemkfid1N 38672 cdlemk47 38700 cdlemk48 38701 cdlemk50 38703 cdlemk51 38704 cdlemk52 38705 cdlemm10N 38869 |
Copyright terms: Public domain | W3C validator |