Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version GIF version |
Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 38153 uses. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
ltrnel.l | ⊢ ≤ = (le‘𝐾) |
ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37303 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | ltrnel.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | ltrnel.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | 2, 3, 5, 6 | ltrnatb 38151 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
8 | 4, 7 | syl3an3 1164 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
9 | 1, 8 | mpbid 231 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Basecbs 16912 lecple 16969 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-plt 18048 df-glb 18065 df-p0 18143 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-hlat 37365 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 |
This theorem is referenced by: ltrncoat 38158 trlcnv 38179 trljat2 38181 trlat 38183 trlval3 38201 trlval4 38202 cdlemc3 38207 cdlemc5 38209 cdlemg2kq 38616 cdlemg9a 38646 cdlemg9 38648 cdlemg10bALTN 38650 cdlemg10c 38653 cdlemg10a 38654 cdlemg10 38655 cdlemg12a 38657 cdlemg12c 38659 cdlemg13a 38665 cdlemg17a 38675 cdlemg17g 38681 cdlemg18a 38692 cdlemg18b 38693 cdlemg18c 38694 trlcoabs2N 38736 trlcolem 38740 cdlemg42 38743 cdlemi 38834 cdlemk3 38847 cdlemk4 38848 cdlemk6 38851 cdlemk9 38853 cdlemk9bN 38854 cdlemk10 38857 cdlemksat 38860 cdlemk7 38862 cdlemk12 38864 cdlemkole 38867 cdlemk14 38868 cdlemk15 38869 cdlemk17 38872 cdlemk5u 38875 cdlemk6u 38876 cdlemkuat 38880 cdlemk7u 38884 cdlemk12u 38886 cdlemk37 38928 cdlemk39 38930 cdlemkfid1N 38935 cdlemk47 38963 cdlemk48 38964 cdlemk50 38966 cdlemk51 38967 cdlemk52 38968 cdlemm10N 39132 |
Copyright terms: Public domain | W3C validator |