| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version GIF version | ||
| Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 40184 uses. (Contributed by NM, 25-May-2012.) |
| Ref | Expression |
|---|---|
| ltrnel.l | ⊢ ≤ = (le‘𝐾) |
| ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39334 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 5 | ltrnel.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | ltrnel.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 7 | 2, 3, 5, 6 | ltrnatb 40182 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 8 | 4, 7 | syl3an3 1165 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 lecple 17168 Atomscatm 39308 HLchlt 39395 LHypclh 40029 LTrncltrn 40146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-plt 18234 df-glb 18251 df-p0 18329 df-oposet 39221 df-ol 39223 df-oml 39224 df-covers 39311 df-ats 39312 df-hlat 39396 df-lhyp 40033 df-laut 40034 df-ldil 40149 df-ltrn 40150 |
| This theorem is referenced by: ltrncoat 40189 trlcnv 40210 trljat2 40212 trlat 40214 trlval3 40232 trlval4 40233 cdlemc3 40238 cdlemc5 40240 cdlemg2kq 40647 cdlemg9a 40677 cdlemg9 40679 cdlemg10bALTN 40681 cdlemg10c 40684 cdlemg10a 40685 cdlemg10 40686 cdlemg12a 40688 cdlemg12c 40690 cdlemg13a 40696 cdlemg17a 40706 cdlemg17g 40712 cdlemg18a 40723 cdlemg18b 40724 cdlemg18c 40725 trlcoabs2N 40767 trlcolem 40771 cdlemg42 40774 cdlemi 40865 cdlemk3 40878 cdlemk4 40879 cdlemk6 40882 cdlemk9 40884 cdlemk9bN 40885 cdlemk10 40888 cdlemksat 40891 cdlemk7 40893 cdlemk12 40895 cdlemkole 40898 cdlemk14 40899 cdlemk15 40900 cdlemk17 40903 cdlemk5u 40906 cdlemk6u 40907 cdlemkuat 40911 cdlemk7u 40915 cdlemk12u 40917 cdlemk37 40959 cdlemk39 40961 cdlemkfid1N 40966 cdlemk47 40994 cdlemk48 40995 cdlemk50 40997 cdlemk51 40998 cdlemk52 40999 cdlemm10N 41163 |
| Copyright terms: Public domain | W3C validator |