| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version GIF version | ||
| Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 40133 uses. (Contributed by NM, 25-May-2012.) |
| Ref | Expression |
|---|---|
| ltrnel.l | ⊢ ≤ = (le‘𝐾) |
| ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39282 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 5 | ltrnel.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | ltrnel.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 7 | 2, 3, 5, 6 | ltrnatb 40131 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 8 | 4, 7 | syl3an3 1165 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 lecple 17227 Atomscatm 39256 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-plt 18289 df-glb 18306 df-p0 18384 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-hlat 39344 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 |
| This theorem is referenced by: ltrncoat 40138 trlcnv 40159 trljat2 40161 trlat 40163 trlval3 40181 trlval4 40182 cdlemc3 40187 cdlemc5 40189 cdlemg2kq 40596 cdlemg9a 40626 cdlemg9 40628 cdlemg10bALTN 40630 cdlemg10c 40633 cdlemg10a 40634 cdlemg10 40635 cdlemg12a 40637 cdlemg12c 40639 cdlemg13a 40645 cdlemg17a 40655 cdlemg17g 40661 cdlemg18a 40672 cdlemg18b 40673 cdlemg18c 40674 trlcoabs2N 40716 trlcolem 40720 cdlemg42 40723 cdlemi 40814 cdlemk3 40827 cdlemk4 40828 cdlemk6 40831 cdlemk9 40833 cdlemk9bN 40834 cdlemk10 40837 cdlemksat 40840 cdlemk7 40842 cdlemk12 40844 cdlemkole 40847 cdlemk14 40848 cdlemk15 40849 cdlemk17 40852 cdlemk5u 40855 cdlemk6u 40856 cdlemkuat 40860 cdlemk7u 40864 cdlemk12u 40866 cdlemk37 40908 cdlemk39 40910 cdlemkfid1N 40915 cdlemk47 40943 cdlemk48 40944 cdlemk50 40946 cdlemk51 40947 cdlemk52 40948 cdlemm10N 41112 |
| Copyright terms: Public domain | W3C validator |