| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version GIF version | ||
| Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 40121 uses. (Contributed by NM, 25-May-2012.) |
| Ref | Expression |
|---|---|
| ltrnel.l | ⊢ ≤ = (le‘𝐾) |
| ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39270 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 5 | ltrnel.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | ltrnel.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 7 | 2, 3, 5, 6 | ltrnatb 40119 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 8 | 4, 7 | syl3an3 1165 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 Basecbs 17138 lecple 17186 Atomscatm 39244 HLchlt 39331 LHypclh 39966 LTrncltrn 40083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-plt 18252 df-glb 18269 df-p0 18347 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-hlat 39332 df-lhyp 39970 df-laut 39971 df-ldil 40086 df-ltrn 40087 |
| This theorem is referenced by: ltrncoat 40126 trlcnv 40147 trljat2 40149 trlat 40151 trlval3 40169 trlval4 40170 cdlemc3 40175 cdlemc5 40177 cdlemg2kq 40584 cdlemg9a 40614 cdlemg9 40616 cdlemg10bALTN 40618 cdlemg10c 40621 cdlemg10a 40622 cdlemg10 40623 cdlemg12a 40625 cdlemg12c 40627 cdlemg13a 40633 cdlemg17a 40643 cdlemg17g 40649 cdlemg18a 40660 cdlemg18b 40661 cdlemg18c 40662 trlcoabs2N 40704 trlcolem 40708 cdlemg42 40711 cdlemi 40802 cdlemk3 40815 cdlemk4 40816 cdlemk6 40819 cdlemk9 40821 cdlemk9bN 40822 cdlemk10 40825 cdlemksat 40828 cdlemk7 40830 cdlemk12 40832 cdlemkole 40835 cdlemk14 40836 cdlemk15 40837 cdlemk17 40840 cdlemk5u 40843 cdlemk6u 40844 cdlemkuat 40848 cdlemk7u 40852 cdlemk12u 40854 cdlemk37 40896 cdlemk39 40898 cdlemkfid1N 40903 cdlemk47 40931 cdlemk48 40932 cdlemk50 40934 cdlemk51 40935 cdlemk52 40936 cdlemm10N 41100 |
| Copyright terms: Public domain | W3C validator |