| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncnvatb | Structured version Visualization version GIF version | ||
| Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.) |
| Ref | Expression |
|---|---|
| ltrnatb.b | ⊢ 𝐵 = (Base‘𝐾) |
| ltrnatb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnatb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnatb.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrncnvatb | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (◡𝐹‘𝑃) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrnatb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | ltrnatb.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | ltrnatb.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | ltrn1o 40123 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| 5 | f1ocnvdm 7222 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑃 ∈ 𝐵) → (◡𝐹‘𝑃) ∈ 𝐵) | |
| 6 | 4, 5 | stoic3 1776 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (◡𝐹‘𝑃) ∈ 𝐵) |
| 7 | ltrnatb.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | 1, 7, 2, 3 | ltrnatb 40136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (◡𝐹‘𝑃) ∈ 𝐵) → ((◡𝐹‘𝑃) ∈ 𝐴 ↔ (𝐹‘(◡𝐹‘𝑃)) ∈ 𝐴)) |
| 9 | 6, 8 | syld3an3 1411 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((◡𝐹‘𝑃) ∈ 𝐴 ↔ (𝐹‘(◡𝐹‘𝑃)) ∈ 𝐴)) |
| 10 | f1ocnvfv2 7214 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑃 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑃)) = 𝑃) | |
| 11 | 4, 10 | stoic3 1776 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑃)) = 𝑃) |
| 12 | 11 | eleq1d 2813 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝐹‘(◡𝐹‘𝑃)) ∈ 𝐴 ↔ 𝑃 ∈ 𝐴)) |
| 13 | 9, 12 | bitr2d 280 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (◡𝐹‘𝑃) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ◡ccnv 5618 –1-1-onto→wf1o 6481 ‘cfv 6482 Basecbs 17120 Atomscatm 39262 HLchlt 39349 LHypclh 39983 LTrncltrn 40100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-plt 18234 df-glb 18251 df-p0 18329 df-oposet 39175 df-ol 39177 df-oml 39178 df-covers 39265 df-ats 39266 df-hlat 39350 df-lhyp 39987 df-laut 39988 df-ldil 40103 df-ltrn 40104 |
| This theorem is referenced by: ltrncnvat 40140 |
| Copyright terms: Public domain | W3C validator |