![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncnvatb | Structured version Visualization version GIF version |
Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.) |
Ref | Expression |
---|---|
ltrnatb.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrnatb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnatb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnatb.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrncnvatb | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (◡𝐹‘𝑃) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnatb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | ltrnatb.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | ltrnatb.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | ltrn1o 40081 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
5 | f1ocnvdm 7321 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑃 ∈ 𝐵) → (◡𝐹‘𝑃) ∈ 𝐵) | |
6 | 4, 5 | stoic3 1774 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (◡𝐹‘𝑃) ∈ 𝐵) |
7 | ltrnatb.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 1, 7, 2, 3 | ltrnatb 40094 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (◡𝐹‘𝑃) ∈ 𝐵) → ((◡𝐹‘𝑃) ∈ 𝐴 ↔ (𝐹‘(◡𝐹‘𝑃)) ∈ 𝐴)) |
9 | 6, 8 | syld3an3 1409 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((◡𝐹‘𝑃) ∈ 𝐴 ↔ (𝐹‘(◡𝐹‘𝑃)) ∈ 𝐴)) |
10 | f1ocnvfv2 7313 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑃 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑃)) = 𝑃) | |
11 | 4, 10 | stoic3 1774 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑃)) = 𝑃) |
12 | 11 | eleq1d 2829 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝐹‘(◡𝐹‘𝑃)) ∈ 𝐴 ↔ 𝑃 ∈ 𝐴)) |
13 | 9, 12 | bitr2d 280 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (◡𝐹‘𝑃) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ◡ccnv 5699 –1-1-onto→wf1o 6572 ‘cfv 6573 Basecbs 17258 Atomscatm 39219 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-plt 18400 df-glb 18417 df-p0 18495 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-hlat 39307 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 |
This theorem is referenced by: ltrncnvat 40098 |
Copyright terms: Public domain | W3C validator |