![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncnvatb | Structured version Visualization version GIF version |
Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.) |
Ref | Expression |
---|---|
ltrnatb.b | β’ π΅ = (BaseβπΎ) |
ltrnatb.a | β’ π΄ = (AtomsβπΎ) |
ltrnatb.h | β’ π» = (LHypβπΎ) |
ltrnatb.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrncnvatb | β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β (π β π΄ β (β‘πΉβπ) β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnatb.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
2 | ltrnatb.h | . . . . 5 β’ π» = (LHypβπΎ) | |
3 | ltrnatb.t | . . . . 5 β’ π = ((LTrnβπΎ)βπ) | |
4 | 1, 2, 3 | ltrn1o 38995 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ πΉ β π) β πΉ:π΅β1-1-ontoβπ΅) |
5 | f1ocnvdm 7283 | . . . 4 β’ ((πΉ:π΅β1-1-ontoβπ΅ β§ π β π΅) β (β‘πΉβπ) β π΅) | |
6 | 4, 5 | stoic3 1779 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β (β‘πΉβπ) β π΅) |
7 | ltrnatb.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
8 | 1, 7, 2, 3 | ltrnatb 39008 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ (β‘πΉβπ) β π΅) β ((β‘πΉβπ) β π΄ β (πΉβ(β‘πΉβπ)) β π΄)) |
9 | 6, 8 | syld3an3 1410 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β ((β‘πΉβπ) β π΄ β (πΉβ(β‘πΉβπ)) β π΄)) |
10 | f1ocnvfv2 7275 | . . . 4 β’ ((πΉ:π΅β1-1-ontoβπ΅ β§ π β π΅) β (πΉβ(β‘πΉβπ)) = π) | |
11 | 4, 10 | stoic3 1779 | . . 3 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β (πΉβ(β‘πΉβπ)) = π) |
12 | 11 | eleq1d 2819 | . 2 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β ((πΉβ(β‘πΉβπ)) β π΄ β π β π΄)) |
13 | 9, 12 | bitr2d 280 | 1 β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ π β π΅) β (π β π΄ β (β‘πΉβπ) β π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β‘ccnv 5676 β1-1-ontoβwf1o 6543 βcfv 6544 Basecbs 17144 Atomscatm 38133 HLchlt 38220 LHypclh 38855 LTrncltrn 38972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-plt 18283 df-glb 18300 df-p0 18378 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-hlat 38221 df-lhyp 38859 df-laut 38860 df-ldil 38975 df-ltrn 38976 |
This theorem is referenced by: ltrncnvat 39012 |
Copyright terms: Public domain | W3C validator |