Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncnvatb | Structured version Visualization version GIF version |
Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.) |
Ref | Expression |
---|---|
ltrnatb.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrnatb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnatb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnatb.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrncnvatb | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (◡𝐹‘𝑃) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnatb.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | ltrnatb.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | ltrnatb.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | ltrn1o 38138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
5 | f1ocnvdm 7157 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑃 ∈ 𝐵) → (◡𝐹‘𝑃) ∈ 𝐵) | |
6 | 4, 5 | stoic3 1779 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (◡𝐹‘𝑃) ∈ 𝐵) |
7 | ltrnatb.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 1, 7, 2, 3 | ltrnatb 38151 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (◡𝐹‘𝑃) ∈ 𝐵) → ((◡𝐹‘𝑃) ∈ 𝐴 ↔ (𝐹‘(◡𝐹‘𝑃)) ∈ 𝐴)) |
9 | 6, 8 | syld3an3 1408 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((◡𝐹‘𝑃) ∈ 𝐴 ↔ (𝐹‘(◡𝐹‘𝑃)) ∈ 𝐴)) |
10 | f1ocnvfv2 7149 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑃 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑃)) = 𝑃) | |
11 | 4, 10 | stoic3 1779 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑃)) = 𝑃) |
12 | 11 | eleq1d 2823 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → ((𝐹‘(◡𝐹‘𝑃)) ∈ 𝐴 ↔ 𝑃 ∈ 𝐴)) |
13 | 9, 12 | bitr2d 279 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ (◡𝐹‘𝑃) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ◡ccnv 5588 –1-1-onto→wf1o 6432 ‘cfv 6433 Basecbs 16912 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-plt 18048 df-glb 18065 df-p0 18143 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-hlat 37365 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 |
This theorem is referenced by: ltrncnvat 38155 |
Copyright terms: Public domain | W3C validator |