Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvatb Structured version   Visualization version   GIF version

Theorem ltrncnvatb 40132
Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
ltrnatb.b 𝐵 = (Base‘𝐾)
ltrnatb.a 𝐴 = (Atoms‘𝐾)
ltrnatb.h 𝐻 = (LHyp‘𝐾)
ltrnatb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnvatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))

Proof of Theorem ltrncnvatb
StepHypRef Expression
1 ltrnatb.b . . . . 5 𝐵 = (Base‘𝐾)
2 ltrnatb.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 ltrnatb.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrn1o 40118 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
5 f1ocnvdm 7260 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑃𝐵) → (𝐹𝑃) ∈ 𝐵)
64, 5stoic3 1776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹𝑃) ∈ 𝐵)
7 ltrnatb.a . . . 4 𝐴 = (Atoms‘𝐾)
81, 7, 2, 3ltrnatb 40131 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐹𝑃) ∈ 𝐵) → ((𝐹𝑃) ∈ 𝐴 ↔ (𝐹‘(𝐹𝑃)) ∈ 𝐴))
96, 8syld3an3 1411 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹𝑃) ∈ 𝐴 ↔ (𝐹‘(𝐹𝑃)) ∈ 𝐴))
10 f1ocnvfv2 7252 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑃𝐵) → (𝐹‘(𝐹𝑃)) = 𝑃)
114, 10stoic3 1776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹‘(𝐹𝑃)) = 𝑃)
1211eleq1d 2813 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹‘(𝐹𝑃)) ∈ 𝐴𝑃𝐴))
139, 12bitr2d 280 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ccnv 5637  1-1-ontowf1o 6510  cfv 6511  Basecbs 17179  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-plt 18289  df-glb 18306  df-p0 18384  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-hlat 39344  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099
This theorem is referenced by:  ltrncnvat  40135
  Copyright terms: Public domain W3C validator