Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclt0 Structured version   Visualization version   GIF version

Theorem reclt0 41656
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
reclt0.1 (𝜑𝐴 ∈ ℝ)
reclt0.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
reclt0 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))

Proof of Theorem reclt0
StepHypRef Expression
1 reclt0.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 483 . . . 4 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
3 simpr 487 . . . 4 ((𝜑𝐴 < 0) → 𝐴 < 0)
42, 3reclt0d 41651 . . 3 ((𝜑𝐴 < 0) → (1 / 𝐴) < 0)
54ex 415 . 2 (𝜑 → (𝐴 < 0 → (1 / 𝐴) < 0))
6 0red 10638 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ)
71adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ)
8 reclt0.2 . . . . . . . . . 10 (𝜑𝐴 ≠ 0)
98necomd 3071 . . . . . . . . 9 (𝜑 → 0 ≠ 𝐴)
109adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ≠ 𝐴)
11 simpr 487 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0)
126, 7, 10, 11lttri5d 41559 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
13 0red 10638 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 ∈ ℝ)
141, 8rereccld 11461 . . . . . . . . . 10 (𝜑 → (1 / 𝐴) ∈ ℝ)
1514adantr 483 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
161adantr 483 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
17 simpr 487 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴)
1816, 17recgt0d 11568 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
1913, 15, 18ltled 10782 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
2013, 15lenltd 10780 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
2119, 20mpbid 234 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
2212, 21syldan 593 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ (1 / 𝐴) < 0)
2322ex 415 . . . . 5 (𝜑 → (¬ 𝐴 < 0 → ¬ (1 / 𝐴) < 0))
2423con4d 115 . . . 4 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
2524imp 409 . . 3 ((𝜑 ∧ (1 / 𝐴) < 0) → 𝐴 < 0)
2625ex 415 . 2 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
275, 26impbid 214 1 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2110  wne 3016   class class class wbr 5058  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   < clt 10669  cle 10670   / cdiv 11291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292
This theorem is referenced by:  pimrecltneg  42995  smfrec  43058
  Copyright terms: Public domain W3C validator