Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclt0 Structured version   Visualization version   GIF version

Theorem reclt0 44773
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
reclt0.1 (𝜑𝐴 ∈ ℝ)
reclt0.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
reclt0 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))

Proof of Theorem reclt0
StepHypRef Expression
1 reclt0.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . 4 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
3 simpr 484 . . . 4 ((𝜑𝐴 < 0) → 𝐴 < 0)
42, 3reclt0d 44769 . . 3 ((𝜑𝐴 < 0) → (1 / 𝐴) < 0)
54ex 412 . 2 (𝜑 → (𝐴 < 0 → (1 / 𝐴) < 0))
6 0red 11248 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ)
71adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ)
8 reclt0.2 . . . . . . . . . 10 (𝜑𝐴 ≠ 0)
98necomd 2993 . . . . . . . . 9 (𝜑 → 0 ≠ 𝐴)
109adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ≠ 𝐴)
11 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0)
126, 7, 10, 11lttri5d 44681 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
13 0red 11248 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 ∈ ℝ)
141, 8rereccld 12072 . . . . . . . . . 10 (𝜑 → (1 / 𝐴) ∈ ℝ)
1514adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
161adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
17 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴)
1816, 17recgt0d 12179 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
1913, 15, 18ltled 11393 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
2013, 15lenltd 11391 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
2119, 20mpbid 231 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
2212, 21syldan 590 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ (1 / 𝐴) < 0)
2322ex 412 . . . . 5 (𝜑 → (¬ 𝐴 < 0 → ¬ (1 / 𝐴) < 0))
2423con4d 115 . . . 4 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
2524imp 406 . . 3 ((𝜑 ∧ (1 / 𝐴) < 0) → 𝐴 < 0)
2625ex 412 . 2 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
275, 26impbid 211 1 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2099  wne 2937   class class class wbr 5148  (class class class)co 7420  cr 11138  0cc0 11139  1c1 11140   < clt 11279  cle 11280   / cdiv 11902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903
This theorem is referenced by:  pimrecltneg  46112  smfrec  46177
  Copyright terms: Public domain W3C validator