Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclt0 Structured version   Visualization version   GIF version

Theorem reclt0 42492
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
reclt0.1 (𝜑𝐴 ∈ ℝ)
reclt0.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
reclt0 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))

Proof of Theorem reclt0
StepHypRef Expression
1 reclt0.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 484 . . . 4 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
3 simpr 488 . . . 4 ((𝜑𝐴 < 0) → 𝐴 < 0)
42, 3reclt0d 42487 . . 3 ((𝜑𝐴 < 0) → (1 / 𝐴) < 0)
54ex 416 . 2 (𝜑 → (𝐴 < 0 → (1 / 𝐴) < 0))
6 0red 10725 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ)
71adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ)
8 reclt0.2 . . . . . . . . . 10 (𝜑𝐴 ≠ 0)
98necomd 2990 . . . . . . . . 9 (𝜑 → 0 ≠ 𝐴)
109adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ≠ 𝐴)
11 simpr 488 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0)
126, 7, 10, 11lttri5d 42399 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
13 0red 10725 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 ∈ ℝ)
141, 8rereccld 11548 . . . . . . . . . 10 (𝜑 → (1 / 𝐴) ∈ ℝ)
1514adantr 484 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
161adantr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
17 simpr 488 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴)
1816, 17recgt0d 11655 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
1913, 15, 18ltled 10869 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
2013, 15lenltd 10867 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
2119, 20mpbid 235 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
2212, 21syldan 594 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ (1 / 𝐴) < 0)
2322ex 416 . . . . 5 (𝜑 → (¬ 𝐴 < 0 → ¬ (1 / 𝐴) < 0))
2423con4d 115 . . . 4 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
2524imp 410 . . 3 ((𝜑 ∧ (1 / 𝐴) < 0) → 𝐴 < 0)
2625ex 416 . 2 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
275, 26impbid 215 1 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2114  wne 2935   class class class wbr 5031  (class class class)co 7173  cr 10617  0cc0 10618  1c1 10619   < clt 10756  cle 10757   / cdiv 11378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-po 5443  df-so 5444  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379
This theorem is referenced by:  pimrecltneg  43822  smfrec  43885
  Copyright terms: Public domain W3C validator