![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reclt0 | Structured version Visualization version GIF version |
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
reclt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
reclt0.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
reclt0 | ⊢ (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reclt0.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐴 ∈ ℝ) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐴 < 0) | |
4 | 2, 3 | reclt0d 45302 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 0) → (1 / 𝐴) < 0) |
5 | 4 | ex 412 | . 2 ⊢ (𝜑 → (𝐴 < 0 → (1 / 𝐴) < 0)) |
6 | 0red 11293 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ) | |
7 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ) |
8 | reclt0.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ≠ 0) | |
9 | 8 | necomd 3002 | . . . . . . . . 9 ⊢ (𝜑 → 0 ≠ 𝐴) |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ≠ 𝐴) |
11 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0) | |
12 | 6, 7, 10, 11 | lttri5d 45214 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → 0 < 𝐴) |
13 | 0red 11293 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 ∈ ℝ) | |
14 | 1, 8 | rereccld 12121 | . . . . . . . . . 10 ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
16 | 1 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) |
17 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴) | |
18 | 16, 17 | recgt0d 12229 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) |
19 | 13, 15, 18 | ltled 11438 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴)) |
20 | 13, 15 | lenltd 11436 | . . . . . . . 8 ⊢ ((𝜑 ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0)) |
21 | 19, 20 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0) |
22 | 12, 21 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ (1 / 𝐴) < 0) |
23 | 22 | ex 412 | . . . . 5 ⊢ (𝜑 → (¬ 𝐴 < 0 → ¬ (1 / 𝐴) < 0)) |
24 | 23 | con4d 115 | . . . 4 ⊢ (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0)) |
25 | 24 | imp 406 | . . 3 ⊢ ((𝜑 ∧ (1 / 𝐴) < 0) → 𝐴 < 0) |
26 | 25 | ex 412 | . 2 ⊢ (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0)) |
27 | 5, 26 | impbid 212 | 1 ⊢ (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 < clt 11324 ≤ cle 11325 / cdiv 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 |
This theorem is referenced by: pimrecltneg 46645 smfrec 46710 |
Copyright terms: Public domain | W3C validator |