Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reclt0 Structured version   Visualization version   GIF version

Theorem reclt0 45380
Description: The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
reclt0.1 (𝜑𝐴 ∈ ℝ)
reclt0.2 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
reclt0 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))

Proof of Theorem reclt0
StepHypRef Expression
1 reclt0.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . 4 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
3 simpr 484 . . . 4 ((𝜑𝐴 < 0) → 𝐴 < 0)
42, 3reclt0d 45376 . . 3 ((𝜑𝐴 < 0) → (1 / 𝐴) < 0)
54ex 412 . 2 (𝜑 → (𝐴 < 0 → (1 / 𝐴) < 0))
6 0red 11153 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ∈ ℝ)
71adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 𝐴 ∈ ℝ)
8 reclt0.2 . . . . . . . . . 10 (𝜑𝐴 ≠ 0)
98necomd 2980 . . . . . . . . 9 (𝜑 → 0 ≠ 𝐴)
109adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 ≠ 𝐴)
11 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ 𝐴 < 0)
126, 7, 10, 11lttri5d 45290 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 < 0) → 0 < 𝐴)
13 0red 11153 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 ∈ ℝ)
141, 8rereccld 11985 . . . . . . . . . 10 (𝜑 → (1 / 𝐴) ∈ ℝ)
1514adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
161adantr 480 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
17 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → 0 < 𝐴)
1816, 17recgt0d 12093 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
1913, 15, 18ltled 11298 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
2013, 15lenltd 11296 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
2119, 20mpbid 232 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
2212, 21syldan 591 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 < 0) → ¬ (1 / 𝐴) < 0)
2322ex 412 . . . . 5 (𝜑 → (¬ 𝐴 < 0 → ¬ (1 / 𝐴) < 0))
2423con4d 115 . . . 4 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
2524imp 406 . . 3 ((𝜑 ∧ (1 / 𝐴) < 0) → 𝐴 < 0)
2625ex 412 . 2 (𝜑 → ((1 / 𝐴) < 0 → 𝐴 < 0))
275, 26impbid 212 1 (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wne 2925   class class class wbr 5102  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cle 11185   / cdiv 11811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812
This theorem is referenced by:  pimrecltneg  46715  smfrec  46780
  Copyright terms: Public domain W3C validator