Proof of Theorem fourierdlem44
Step | Hyp | Ref
| Expression |
1 | | 0xr 11022 |
. . . . . 6
⊢ 0 ∈
ℝ* |
2 | 1 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ (-π[,]π) ∧ 0
< 𝐴) → 0 ∈
ℝ*) |
3 | | 2re 12047 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
4 | | pire 25615 |
. . . . . . . 8
⊢ π
∈ ℝ |
5 | 3, 4 | remulcli 10991 |
. . . . . . 7
⊢ (2
· π) ∈ ℝ |
6 | 5 | rexri 11033 |
. . . . . 6
⊢ (2
· π) ∈ ℝ* |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ (-π[,]π) ∧ 0
< 𝐴) → (2 ·
π) ∈ ℝ*) |
8 | 4 | renegcli 11282 |
. . . . . . . 8
⊢ -π
∈ ℝ |
9 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (-π[,]π) →
-π ∈ ℝ) |
10 | 4 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (-π[,]π) →
π ∈ ℝ) |
11 | | id 22 |
. . . . . . 7
⊢ (𝐴 ∈ (-π[,]π) →
𝐴 ∈
(-π[,]π)) |
12 | | eliccre 43043 |
. . . . . . 7
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ ∧ 𝐴 ∈ (-π[,]π)) → 𝐴 ∈
ℝ) |
13 | 9, 10, 11, 12 | syl3anc 1370 |
. . . . . 6
⊢ (𝐴 ∈ (-π[,]π) →
𝐴 ∈
ℝ) |
14 | 13 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ (-π[,]π) ∧ 0
< 𝐴) → 𝐴 ∈
ℝ) |
15 | | simpr 485 |
. . . . 5
⊢ ((𝐴 ∈ (-π[,]π) ∧ 0
< 𝐴) → 0 < 𝐴) |
16 | 5 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (-π[,]π) → (2
· π) ∈ ℝ) |
17 | 9 | rexrd 11025 |
. . . . . . . 8
⊢ (𝐴 ∈ (-π[,]π) →
-π ∈ ℝ*) |
18 | 10 | rexrd 11025 |
. . . . . . . 8
⊢ (𝐴 ∈ (-π[,]π) →
π ∈ ℝ*) |
19 | | iccleub 13134 |
. . . . . . . 8
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ 𝐴 ∈ (-π[,]π)) →
𝐴 ≤
π) |
20 | 17, 18, 11, 19 | syl3anc 1370 |
. . . . . . 7
⊢ (𝐴 ∈ (-π[,]π) →
𝐴 ≤
π) |
21 | | pirp 25618 |
. . . . . . . . 9
⊢ π
∈ ℝ+ |
22 | | 2timesgt 42827 |
. . . . . . . . 9
⊢ (π
∈ ℝ+ → π < (2 · π)) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . 8
⊢ π <
(2 · π) |
24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ (-π[,]π) →
π < (2 · π)) |
25 | 13, 10, 16, 20, 24 | lelttrd 11133 |
. . . . . 6
⊢ (𝐴 ∈ (-π[,]π) →
𝐴 < (2 ·
π)) |
26 | 25 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ (-π[,]π) ∧ 0
< 𝐴) → 𝐴 < (2 ·
π)) |
27 | 2, 7, 14, 15, 26 | eliood 43036 |
. . . 4
⊢ ((𝐴 ∈ (-π[,]π) ∧ 0
< 𝐴) → 𝐴 ∈ (0(,)(2 ·
π))) |
28 | 27 | adantlr 712 |
. . 3
⊢ (((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) ∧ 0 <
𝐴) → 𝐴 ∈ (0(,)(2 ·
π))) |
29 | | sinaover2ne0 43409 |
. . 3
⊢ (𝐴 ∈ (0(,)(2 · π))
→ (sin‘(𝐴 / 2))
≠ 0) |
30 | 28, 29 | syl 17 |
. 2
⊢ (((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) ∧ 0 <
𝐴) → (sin‘(𝐴 / 2)) ≠ 0) |
31 | | simpll 764 |
. . 3
⊢ (((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) ∧ ¬ 0
< 𝐴) → 𝐴 ∈
(-π[,]π)) |
32 | 31, 13 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) ∧ ¬ 0
< 𝐴) → 𝐴 ∈
ℝ) |
33 | | 0red 10978 |
. . . 4
⊢ (((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) ∧ ¬ 0
< 𝐴) → 0 ∈
ℝ) |
34 | | simplr 766 |
. . . 4
⊢ (((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) ∧ ¬ 0
< 𝐴) → 𝐴 ≠ 0) |
35 | | simpr 485 |
. . . 4
⊢ (((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) ∧ ¬ 0
< 𝐴) → ¬ 0 <
𝐴) |
36 | 32, 33, 34, 35 | lttri5d 42838 |
. . 3
⊢ (((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) ∧ ¬ 0
< 𝐴) → 𝐴 < 0) |
37 | 13 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (-π[,]π) →
𝐴 ∈
ℂ) |
38 | 37 | halfcld 12218 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (-π[,]π) →
(𝐴 / 2) ∈
ℂ) |
39 | | sinneg 15855 |
. . . . . . . . . 10
⊢ ((𝐴 / 2) ∈ ℂ →
(sin‘-(𝐴 / 2)) =
-(sin‘(𝐴 /
2))) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ (-π[,]π) →
(sin‘-(𝐴 / 2)) =
-(sin‘(𝐴 /
2))) |
41 | | 2cnd 12051 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (-π[,]π) → 2
∈ ℂ) |
42 | | 2ne0 12077 |
. . . . . . . . . . . 12
⊢ 2 ≠
0 |
43 | 42 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (-π[,]π) → 2
≠ 0) |
44 | 37, 41, 43 | divnegd 11764 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (-π[,]π) →
-(𝐴 / 2) = (-𝐴 / 2)) |
45 | 44 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝐴 ∈ (-π[,]π) →
(sin‘-(𝐴 / 2)) =
(sin‘(-𝐴 /
2))) |
46 | 40, 45 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝐴 ∈ (-π[,]π) →
-(sin‘(𝐴 / 2)) =
(sin‘(-𝐴 /
2))) |
47 | 46 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) →
-(sin‘(𝐴 / 2)) =
(sin‘(-𝐴 /
2))) |
48 | 1 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → 0 ∈
ℝ*) |
49 | 6 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → (2
· π) ∈ ℝ*) |
50 | 13 | renegcld 11402 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (-π[,]π) →
-𝐴 ∈
ℝ) |
51 | 50 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → -𝐴 ∈
ℝ) |
52 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → 𝐴 < 0) |
53 | 13 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → 𝐴 ∈
ℝ) |
54 | 53 | lt0neg1d 11544 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴)) |
55 | 52, 54 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → 0 <
-𝐴) |
56 | 5 | renegcli 11282 |
. . . . . . . . . . . . 13
⊢ -(2
· π) ∈ ℝ |
57 | 56 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → -(2
· π) ∈ ℝ) |
58 | 8 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → -π
∈ ℝ) |
59 | 4, 5 | ltnegi 11519 |
. . . . . . . . . . . . . 14
⊢ (π
< (2 · π) ↔ -(2 · π) < -π) |
60 | 23, 59 | mpbi 229 |
. . . . . . . . . . . . 13
⊢ -(2
· π) < -π |
61 | 60 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → -(2
· π) < -π) |
62 | | iccgelb 13135 |
. . . . . . . . . . . . . 14
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ 𝐴 ∈ (-π[,]π)) →
-π ≤ 𝐴) |
63 | 17, 18, 11, 62 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (-π[,]π) →
-π ≤ 𝐴) |
64 | 63 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → -π ≤
𝐴) |
65 | 57, 58, 53, 61, 64 | ltletrd 11135 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → -(2
· π) < 𝐴) |
66 | 57, 53 | ltnegd 11553 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → (-(2
· π) < 𝐴
↔ -𝐴 < --(2
· π))) |
67 | 65, 66 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → -𝐴 < --(2 ·
π)) |
68 | 16 | recnd 11003 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ (-π[,]π) → (2
· π) ∈ ℂ) |
69 | 68 | negnegd 11323 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (-π[,]π) →
--(2 · π) = (2 · π)) |
70 | 69 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → --(2
· π) = (2 · π)) |
71 | 67, 70 | breqtrd 5100 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → -𝐴 < (2 ·
π)) |
72 | 48, 49, 51, 55, 71 | eliood 43036 |
. . . . . . . 8
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → -𝐴 ∈ (0(,)(2 ·
π))) |
73 | | sinaover2ne0 43409 |
. . . . . . . 8
⊢ (-𝐴 ∈ (0(,)(2 · π))
→ (sin‘(-𝐴 / 2))
≠ 0) |
74 | 72, 73 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) →
(sin‘(-𝐴 / 2)) ≠
0) |
75 | 47, 74 | eqnetrd 3011 |
. . . . . 6
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) →
-(sin‘(𝐴 / 2)) ≠
0) |
76 | 75 | neneqd 2948 |
. . . . 5
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → ¬
-(sin‘(𝐴 / 2)) =
0) |
77 | 38 | sincld 15839 |
. . . . . . 7
⊢ (𝐴 ∈ (-π[,]π) →
(sin‘(𝐴 / 2)) ∈
ℂ) |
78 | 77 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) →
(sin‘(𝐴 / 2)) ∈
ℂ) |
79 | 78 | negeq0d 11324 |
. . . . 5
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) →
((sin‘(𝐴 / 2)) = 0
↔ -(sin‘(𝐴 / 2))
= 0)) |
80 | 76, 79 | mtbird 325 |
. . . 4
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) → ¬
(sin‘(𝐴 / 2)) =
0) |
81 | 80 | neqned 2950 |
. . 3
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 < 0) →
(sin‘(𝐴 / 2)) ≠
0) |
82 | 31, 36, 81 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) ∧ ¬ 0
< 𝐴) →
(sin‘(𝐴 / 2)) ≠
0) |
83 | 30, 82 | pm2.61dan 810 |
1
⊢ ((𝐴 ∈ (-π[,]π) ∧
𝐴 ≠ 0) →
(sin‘(𝐴 / 2)) ≠
0) |