Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem44 Structured version   Visualization version   GIF version

Theorem fourierdlem44 46122
Description: A condition for having (sin‘(𝐴 / 2)) nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem44 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)

Proof of Theorem fourierdlem44
StepHypRef Expression
1 0xr 11197 . . . . . 6 0 ∈ ℝ*
21a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
3 2re 12236 . . . . . . . 8 2 ∈ ℝ
4 pire 26342 . . . . . . . 8 π ∈ ℝ
53, 4remulcli 11166 . . . . . . 7 (2 · π) ∈ ℝ
65rexri 11208 . . . . . 6 (2 · π) ∈ ℝ*
76a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ*)
84renegcli 11459 . . . . . . . 8 -π ∈ ℝ
98a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ)
104a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π ∈ ℝ)
11 id 22 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ (-π[,]π))
12 eliccre 45476 . . . . . . 7 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝐴 ∈ (-π[,]π)) → 𝐴 ∈ ℝ)
139, 10, 11, 12syl3anc 1373 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
1413adantr 480 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
15 simpr 484 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 < 𝐴)
165a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℝ)
179rexrd 11200 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ*)
1810rexrd 11200 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → π ∈ ℝ*)
19 iccleub 13338 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2017, 18, 11, 19syl3anc 1373 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ≤ π)
21 pirp 26346 . . . . . . . . 9 π ∈ ℝ+
22 2timesgt 45259 . . . . . . . . 9 (π ∈ ℝ+ → π < (2 · π))
2321, 22ax-mp 5 . . . . . . . 8 π < (2 · π)
2423a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π < (2 · π))
2513, 10, 16, 20, 24lelttrd 11308 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 < (2 · π))
2625adantr 480 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
272, 7, 14, 15, 26eliood 45469 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
2827adantlr 715 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
29 sinaover2ne0 45839 . . 3 (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0)
3028, 29syl 17 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
31 simpll 766 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ (-π[,]π))
3231, 13syl 17 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
33 0red 11153 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
34 simplr 768 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ≠ 0)
35 simpr 484 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
3632, 33, 34, 35lttri5d 45270 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
3713recnd 11178 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
3837halfcld 12403 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℂ)
39 sinneg 16090 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
4038, 39syl 17 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
41 2cnd 12240 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ∈ ℂ)
42 2ne0 12266 . . . . . . . . . . . 12 2 ≠ 0
4342a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ≠ 0)
4437, 41, 43divnegd 11947 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -(𝐴 / 2) = (-𝐴 / 2))
4544fveq2d 6844 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4640, 45eqtr3d 2766 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4746adantr 480 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
481a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 ∈ ℝ*)
496a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ*)
5013renegcld 11581 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -𝐴 ∈ ℝ)
5150adantr 480 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
52 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 < 0)
5313adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
5453lt0neg1d 11723 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
5552, 54mpbid 232 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 < -𝐴)
565renegcli 11459 . . . . . . . . . . . . 13 -(2 · π) ∈ ℝ
5756a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) ∈ ℝ)
588a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ∈ ℝ)
594, 5ltnegi 11698 . . . . . . . . . . . . . 14 (π < (2 · π) ↔ -(2 · π) < -π)
6023, 59mpbi 230 . . . . . . . . . . . . 13 -(2 · π) < -π
6160a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < -π)
62 iccgelb 13339 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6317, 18, 11, 62syl3anc 1373 . . . . . . . . . . . . 13 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
6463adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ≤ 𝐴)
6557, 58, 53, 61, 64ltletrd 11310 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < 𝐴)
6657, 53ltnegd 11732 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (-(2 · π) < 𝐴 ↔ -𝐴 < --(2 · π)))
6765, 66mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < --(2 · π))
6816recnd 11178 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℂ)
6968negnegd 11500 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → --(2 · π) = (2 · π))
7069adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → --(2 · π) = (2 · π))
7167, 70breqtrd 5128 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7248, 49, 51, 55, 71eliood 45469 . . . . . . . 8 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ (0(,)(2 · π)))
73 sinaover2ne0 45839 . . . . . . . 8 (-𝐴 ∈ (0(,)(2 · π)) → (sin‘(-𝐴 / 2)) ≠ 0)
7472, 73syl 17 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(-𝐴 / 2)) ≠ 0)
7547, 74eqnetrd 2992 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) ≠ 0)
7675neneqd 2930 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ -(sin‘(𝐴 / 2)) = 0)
7738sincld 16074 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (sin‘(𝐴 / 2)) ∈ ℂ)
7877adantr 480 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ∈ ℂ)
7978negeq0d 11501 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ((sin‘(𝐴 / 2)) = 0 ↔ -(sin‘(𝐴 / 2)) = 0))
8076, 79mtbird 325 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ (sin‘(𝐴 / 2)) = 0)
8180neqned 2932 . . 3 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ≠ 0)
8231, 36, 81syl2anc 584 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
8330, 82pm2.61dan 812 1 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  -cneg 11382   / cdiv 11811  2c2 12217  +crp 12927  (,)cioo 13282  [,]cicc 13285  sincsin 16005  πcpi 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by:  fourierdlem56  46133  fourierdlem57  46134  fourierdlem58  46135  fourierdlem62  46139  fourierdlem66  46143  fourierdlem68  46145  fourierdlem72  46149  fourierdlem76  46153  fourierdlem78  46155  fourierdlem80  46157  fourierdlem103  46180  fourierdlem104  46181
  Copyright terms: Public domain W3C validator