Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem44 Structured version   Visualization version   GIF version

Theorem fourierdlem44 43673
Description: A condition for having (sin‘(𝐴 / 2)) nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem44 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)

Proof of Theorem fourierdlem44
StepHypRef Expression
1 0xr 11032 . . . . . 6 0 ∈ ℝ*
21a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
3 2re 12057 . . . . . . . 8 2 ∈ ℝ
4 pire 25625 . . . . . . . 8 π ∈ ℝ
53, 4remulcli 11001 . . . . . . 7 (2 · π) ∈ ℝ
65rexri 11043 . . . . . 6 (2 · π) ∈ ℝ*
76a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ*)
84renegcli 11292 . . . . . . . 8 -π ∈ ℝ
98a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ)
104a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π ∈ ℝ)
11 id 22 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ (-π[,]π))
12 eliccre 43024 . . . . . . 7 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝐴 ∈ (-π[,]π)) → 𝐴 ∈ ℝ)
139, 10, 11, 12syl3anc 1370 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
1413adantr 481 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
15 simpr 485 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 < 𝐴)
165a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℝ)
179rexrd 11035 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ*)
1810rexrd 11035 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → π ∈ ℝ*)
19 iccleub 13144 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2017, 18, 11, 19syl3anc 1370 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ≤ π)
21 pirp 25628 . . . . . . . . 9 π ∈ ℝ+
22 2timesgt 42808 . . . . . . . . 9 (π ∈ ℝ+ → π < (2 · π))
2321, 22ax-mp 5 . . . . . . . 8 π < (2 · π)
2423a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π < (2 · π))
2513, 10, 16, 20, 24lelttrd 11143 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 < (2 · π))
2625adantr 481 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
272, 7, 14, 15, 26eliood 43017 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
2827adantlr 712 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
29 sinaover2ne0 43390 . . 3 (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0)
3028, 29syl 17 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
31 simpll 764 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ (-π[,]π))
3231, 13syl 17 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
33 0red 10988 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
34 simplr 766 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ≠ 0)
35 simpr 485 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
3632, 33, 34, 35lttri5d 42819 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
3713recnd 11013 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
3837halfcld 12228 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℂ)
39 sinneg 15865 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
4038, 39syl 17 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
41 2cnd 12061 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ∈ ℂ)
42 2ne0 12087 . . . . . . . . . . . 12 2 ≠ 0
4342a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ≠ 0)
4437, 41, 43divnegd 11774 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -(𝐴 / 2) = (-𝐴 / 2))
4544fveq2d 6770 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4640, 45eqtr3d 2780 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4746adantr 481 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
481a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 ∈ ℝ*)
496a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ*)
5013renegcld 11412 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -𝐴 ∈ ℝ)
5150adantr 481 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
52 simpr 485 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 < 0)
5313adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
5453lt0neg1d 11554 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
5552, 54mpbid 231 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 < -𝐴)
565renegcli 11292 . . . . . . . . . . . . 13 -(2 · π) ∈ ℝ
5756a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) ∈ ℝ)
588a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ∈ ℝ)
594, 5ltnegi 11529 . . . . . . . . . . . . . 14 (π < (2 · π) ↔ -(2 · π) < -π)
6023, 59mpbi 229 . . . . . . . . . . . . 13 -(2 · π) < -π
6160a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < -π)
62 iccgelb 13145 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6317, 18, 11, 62syl3anc 1370 . . . . . . . . . . . . 13 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
6463adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ≤ 𝐴)
6557, 58, 53, 61, 64ltletrd 11145 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < 𝐴)
6657, 53ltnegd 11563 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (-(2 · π) < 𝐴 ↔ -𝐴 < --(2 · π)))
6765, 66mpbid 231 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < --(2 · π))
6816recnd 11013 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℂ)
6968negnegd 11333 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → --(2 · π) = (2 · π))
7069adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → --(2 · π) = (2 · π))
7167, 70breqtrd 5099 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7248, 49, 51, 55, 71eliood 43017 . . . . . . . 8 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ (0(,)(2 · π)))
73 sinaover2ne0 43390 . . . . . . . 8 (-𝐴 ∈ (0(,)(2 · π)) → (sin‘(-𝐴 / 2)) ≠ 0)
7472, 73syl 17 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(-𝐴 / 2)) ≠ 0)
7547, 74eqnetrd 3011 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) ≠ 0)
7675neneqd 2948 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ -(sin‘(𝐴 / 2)) = 0)
7738sincld 15849 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (sin‘(𝐴 / 2)) ∈ ℂ)
7877adantr 481 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ∈ ℂ)
7978negeq0d 11334 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ((sin‘(𝐴 / 2)) = 0 ↔ -(sin‘(𝐴 / 2)) = 0))
8076, 79mtbird 325 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ (sin‘(𝐴 / 2)) = 0)
8180neqned 2950 . . 3 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ≠ 0)
8231, 36, 81syl2anc 584 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
8330, 82pm2.61dan 810 1 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5073  cfv 6426  (class class class)co 7267  cc 10879  cr 10880  0cc0 10881   · cmul 10886  *cxr 11018   < clt 11019  cle 11020  -cneg 11216   / cdiv 11642  2c2 12038  +crp 12740  (,)cioo 13089  [,]cicc 13092  sincsin 15783  πcpi 15786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-er 8485  df-map 8604  df-pm 8605  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-fi 9157  df-sup 9188  df-inf 9189  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-q 12699  df-rp 12741  df-xneg 12858  df-xadd 12859  df-xmul 12860  df-ioo 13093  df-ioc 13094  df-ico 13095  df-icc 13096  df-fz 13250  df-fzo 13393  df-fl 13522  df-mod 13600  df-seq 13732  df-exp 13793  df-fac 13998  df-bc 14027  df-hash 14055  df-shft 14788  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-limsup 15190  df-clim 15207  df-rlim 15208  df-sum 15408  df-ef 15787  df-sin 15789  df-cos 15790  df-pi 15792  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-hom 16996  df-cco 16997  df-rest 17143  df-topn 17144  df-0g 17162  df-gsum 17163  df-topgen 17164  df-pt 17165  df-prds 17168  df-xrs 17223  df-qtop 17228  df-imas 17229  df-xps 17231  df-mre 17305  df-mrc 17306  df-acs 17308  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-submnd 18441  df-mulg 18711  df-cntz 18933  df-cmn 19398  df-psmet 20599  df-xmet 20600  df-met 20601  df-bl 20602  df-mopn 20603  df-fbas 20604  df-fg 20605  df-cnfld 20608  df-top 22053  df-topon 22070  df-topsp 22092  df-bases 22106  df-cld 22180  df-ntr 22181  df-cls 22182  df-nei 22259  df-lp 22297  df-perf 22298  df-cn 22388  df-cnp 22389  df-haus 22476  df-tx 22723  df-hmeo 22916  df-fil 23007  df-fm 23099  df-flim 23100  df-flf 23101  df-xms 23483  df-ms 23484  df-tms 23485  df-cncf 24051  df-limc 25040  df-dv 25041
This theorem is referenced by:  fourierdlem56  43684  fourierdlem57  43685  fourierdlem58  43686  fourierdlem62  43690  fourierdlem66  43694  fourierdlem68  43696  fourierdlem72  43700  fourierdlem76  43704  fourierdlem78  43706  fourierdlem80  43708  fourierdlem103  43731  fourierdlem104  43732
  Copyright terms: Public domain W3C validator