Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem44 Structured version   Visualization version   GIF version

Theorem fourierdlem44 42313
Description: A condition for having (sin‘(𝐴 / 2)) nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem44 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)

Proof of Theorem fourierdlem44
StepHypRef Expression
1 0xr 10676 . . . . . 6 0 ∈ ℝ*
21a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
3 2re 11699 . . . . . . . 8 2 ∈ ℝ
4 pire 24971 . . . . . . . 8 π ∈ ℝ
53, 4remulcli 10645 . . . . . . 7 (2 · π) ∈ ℝ
65rexri 10687 . . . . . 6 (2 · π) ∈ ℝ*
76a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ*)
84renegcli 10935 . . . . . . . 8 -π ∈ ℝ
98a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ)
104a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π ∈ ℝ)
11 id 22 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ (-π[,]π))
12 eliccre 41657 . . . . . . 7 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝐴 ∈ (-π[,]π)) → 𝐴 ∈ ℝ)
139, 10, 11, 12syl3anc 1363 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
1413adantr 481 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
15 simpr 485 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 < 𝐴)
165a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℝ)
179rexrd 10679 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ*)
1810rexrd 10679 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → π ∈ ℝ*)
19 iccleub 12780 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2017, 18, 11, 19syl3anc 1363 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ≤ π)
21 pirp 24974 . . . . . . . . 9 π ∈ ℝ+
22 2timesgt 41430 . . . . . . . . 9 (π ∈ ℝ+ → π < (2 · π))
2321, 22ax-mp 5 . . . . . . . 8 π < (2 · π)
2423a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π < (2 · π))
2513, 10, 16, 20, 24lelttrd 10786 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 < (2 · π))
2625adantr 481 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
272, 7, 14, 15, 26eliood 41649 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
2827adantlr 711 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
29 sinaover2ne0 42025 . . 3 (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0)
3028, 29syl 17 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
31 simpll 763 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ (-π[,]π))
3231, 13syl 17 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
33 0red 10632 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
34 simplr 765 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ≠ 0)
35 simpr 485 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
3632, 33, 34, 35lttri5d 41442 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
3713recnd 10657 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
3837halfcld 11870 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℂ)
39 sinneg 15487 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
4038, 39syl 17 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
41 2cnd 11703 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ∈ ℂ)
42 2ne0 11729 . . . . . . . . . . . 12 2 ≠ 0
4342a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ≠ 0)
4437, 41, 43divnegd 11417 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -(𝐴 / 2) = (-𝐴 / 2))
4544fveq2d 6667 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4640, 45eqtr3d 2855 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4746adantr 481 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
481a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 ∈ ℝ*)
496a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ*)
5013renegcld 11055 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -𝐴 ∈ ℝ)
5150adantr 481 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
52 simpr 485 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 < 0)
5313adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
5453lt0neg1d 11197 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
5552, 54mpbid 233 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 < -𝐴)
565renegcli 10935 . . . . . . . . . . . . 13 -(2 · π) ∈ ℝ
5756a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) ∈ ℝ)
588a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ∈ ℝ)
594, 5ltnegi 11172 . . . . . . . . . . . . . 14 (π < (2 · π) ↔ -(2 · π) < -π)
6023, 59mpbi 231 . . . . . . . . . . . . 13 -(2 · π) < -π
6160a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < -π)
62 iccgelb 12781 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6317, 18, 11, 62syl3anc 1363 . . . . . . . . . . . . 13 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
6463adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ≤ 𝐴)
6557, 58, 53, 61, 64ltletrd 10788 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < 𝐴)
6657, 53ltnegd 11206 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (-(2 · π) < 𝐴 ↔ -𝐴 < --(2 · π)))
6765, 66mpbid 233 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < --(2 · π))
6816recnd 10657 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℂ)
6968negnegd 10976 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → --(2 · π) = (2 · π))
7069adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → --(2 · π) = (2 · π))
7167, 70breqtrd 5083 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7248, 49, 51, 55, 71eliood 41649 . . . . . . . 8 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ (0(,)(2 · π)))
73 sinaover2ne0 42025 . . . . . . . 8 (-𝐴 ∈ (0(,)(2 · π)) → (sin‘(-𝐴 / 2)) ≠ 0)
7472, 73syl 17 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(-𝐴 / 2)) ≠ 0)
7547, 74eqnetrd 3080 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) ≠ 0)
7675neneqd 3018 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ -(sin‘(𝐴 / 2)) = 0)
7738sincld 15471 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (sin‘(𝐴 / 2)) ∈ ℂ)
7877adantr 481 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ∈ ℂ)
7978negeq0d 10977 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ((sin‘(𝐴 / 2)) = 0 ↔ -(sin‘(𝐴 / 2)) = 0))
8076, 79mtbird 326 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ (sin‘(𝐴 / 2)) = 0)
8180neqned 3020 . . 3 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ≠ 0)
8231, 36, 81syl2anc 584 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
8330, 82pm2.61dan 809 1 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525   · cmul 10530  *cxr 10662   < clt 10663  cle 10664  -cneg 10859   / cdiv 11285  2c2 11680  +crp 12377  (,)cioo 12726  [,]cicc 12729  sincsin 15405  πcpi 15408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392
This theorem is referenced by:  fourierdlem56  42324  fourierdlem57  42325  fourierdlem58  42326  fourierdlem62  42330  fourierdlem66  42334  fourierdlem68  42336  fourierdlem72  42340  fourierdlem76  42344  fourierdlem78  42346  fourierdlem80  42348  fourierdlem103  42371  fourierdlem104  42372
  Copyright terms: Public domain W3C validator