Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem44 Structured version   Visualization version   GIF version

Theorem fourierdlem44 46156
Description: A condition for having (sin‘(𝐴 / 2)) nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem44 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)

Proof of Theorem fourierdlem44
StepHypRef Expression
1 0xr 11228 . . . . . 6 0 ∈ ℝ*
21a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
3 2re 12267 . . . . . . . 8 2 ∈ ℝ
4 pire 26373 . . . . . . . 8 π ∈ ℝ
53, 4remulcli 11197 . . . . . . 7 (2 · π) ∈ ℝ
65rexri 11239 . . . . . 6 (2 · π) ∈ ℝ*
76a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ*)
84renegcli 11490 . . . . . . . 8 -π ∈ ℝ
98a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ)
104a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π ∈ ℝ)
11 id 22 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ (-π[,]π))
12 eliccre 45510 . . . . . . 7 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝐴 ∈ (-π[,]π)) → 𝐴 ∈ ℝ)
139, 10, 11, 12syl3anc 1373 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
1413adantr 480 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
15 simpr 484 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 < 𝐴)
165a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℝ)
179rexrd 11231 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ*)
1810rexrd 11231 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → π ∈ ℝ*)
19 iccleub 13369 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2017, 18, 11, 19syl3anc 1373 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ≤ π)
21 pirp 26377 . . . . . . . . 9 π ∈ ℝ+
22 2timesgt 45293 . . . . . . . . 9 (π ∈ ℝ+ → π < (2 · π))
2321, 22ax-mp 5 . . . . . . . 8 π < (2 · π)
2423a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π < (2 · π))
2513, 10, 16, 20, 24lelttrd 11339 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 < (2 · π))
2625adantr 480 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
272, 7, 14, 15, 26eliood 45503 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
2827adantlr 715 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
29 sinaover2ne0 45873 . . 3 (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0)
3028, 29syl 17 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
31 simpll 766 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ (-π[,]π))
3231, 13syl 17 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
33 0red 11184 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
34 simplr 768 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ≠ 0)
35 simpr 484 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
3632, 33, 34, 35lttri5d 45304 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
3713recnd 11209 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
3837halfcld 12434 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℂ)
39 sinneg 16121 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
4038, 39syl 17 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
41 2cnd 12271 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ∈ ℂ)
42 2ne0 12297 . . . . . . . . . . . 12 2 ≠ 0
4342a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ≠ 0)
4437, 41, 43divnegd 11978 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -(𝐴 / 2) = (-𝐴 / 2))
4544fveq2d 6865 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4640, 45eqtr3d 2767 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4746adantr 480 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
481a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 ∈ ℝ*)
496a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ*)
5013renegcld 11612 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -𝐴 ∈ ℝ)
5150adantr 480 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
52 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 < 0)
5313adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
5453lt0neg1d 11754 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
5552, 54mpbid 232 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 < -𝐴)
565renegcli 11490 . . . . . . . . . . . . 13 -(2 · π) ∈ ℝ
5756a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) ∈ ℝ)
588a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ∈ ℝ)
594, 5ltnegi 11729 . . . . . . . . . . . . . 14 (π < (2 · π) ↔ -(2 · π) < -π)
6023, 59mpbi 230 . . . . . . . . . . . . 13 -(2 · π) < -π
6160a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < -π)
62 iccgelb 13370 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6317, 18, 11, 62syl3anc 1373 . . . . . . . . . . . . 13 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
6463adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ≤ 𝐴)
6557, 58, 53, 61, 64ltletrd 11341 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < 𝐴)
6657, 53ltnegd 11763 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (-(2 · π) < 𝐴 ↔ -𝐴 < --(2 · π)))
6765, 66mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < --(2 · π))
6816recnd 11209 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℂ)
6968negnegd 11531 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → --(2 · π) = (2 · π))
7069adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → --(2 · π) = (2 · π))
7167, 70breqtrd 5136 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7248, 49, 51, 55, 71eliood 45503 . . . . . . . 8 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ (0(,)(2 · π)))
73 sinaover2ne0 45873 . . . . . . . 8 (-𝐴 ∈ (0(,)(2 · π)) → (sin‘(-𝐴 / 2)) ≠ 0)
7472, 73syl 17 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(-𝐴 / 2)) ≠ 0)
7547, 74eqnetrd 2993 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) ≠ 0)
7675neneqd 2931 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ -(sin‘(𝐴 / 2)) = 0)
7738sincld 16105 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (sin‘(𝐴 / 2)) ∈ ℂ)
7877adantr 480 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ∈ ℂ)
7978negeq0d 11532 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ((sin‘(𝐴 / 2)) = 0 ↔ -(sin‘(𝐴 / 2)) = 0))
8076, 79mtbird 325 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ (sin‘(𝐴 / 2)) = 0)
8180neqned 2933 . . 3 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ≠ 0)
8231, 36, 81syl2anc 584 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
8330, 82pm2.61dan 812 1 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  -cneg 11413   / cdiv 11842  2c2 12248  +crp 12958  (,)cioo 13313  [,]cicc 13316  sincsin 16036  πcpi 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  fourierdlem56  46167  fourierdlem57  46168  fourierdlem58  46169  fourierdlem62  46173  fourierdlem66  46177  fourierdlem68  46179  fourierdlem72  46183  fourierdlem76  46187  fourierdlem78  46189  fourierdlem80  46191  fourierdlem103  46214  fourierdlem104  46215
  Copyright terms: Public domain W3C validator