Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem44 Structured version   Visualization version   GIF version

Theorem fourierdlem44 46197
Description: A condition for having (sin‘(𝐴 / 2)) nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem44 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)

Proof of Theorem fourierdlem44
StepHypRef Expression
1 0xr 11159 . . . . . 6 0 ∈ ℝ*
21a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 ∈ ℝ*)
3 2re 12199 . . . . . . . 8 2 ∈ ℝ
4 pire 26393 . . . . . . . 8 π ∈ ℝ
53, 4remulcli 11128 . . . . . . 7 (2 · π) ∈ ℝ
65rexri 11170 . . . . . 6 (2 · π) ∈ ℝ*
76a1i 11 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ*)
84renegcli 11422 . . . . . . . 8 -π ∈ ℝ
98a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ)
104a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π ∈ ℝ)
11 id 22 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ (-π[,]π))
12 eliccre 45553 . . . . . . 7 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝐴 ∈ (-π[,]π)) → 𝐴 ∈ ℝ)
139, 10, 11, 12syl3anc 1373 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
1413adantr 480 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
15 simpr 484 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 0 < 𝐴)
165a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℝ)
179rexrd 11162 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -π ∈ ℝ*)
1810rexrd 11162 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → π ∈ ℝ*)
19 iccleub 13301 . . . . . . . 8 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2017, 18, 11, 19syl3anc 1373 . . . . . . 7 (𝐴 ∈ (-π[,]π) → 𝐴 ≤ π)
21 pirp 26397 . . . . . . . . 9 π ∈ ℝ+
22 2timesgt 45337 . . . . . . . . 9 (π ∈ ℝ+ → π < (2 · π))
2321, 22ax-mp 5 . . . . . . . 8 π < (2 · π)
2423a1i 11 . . . . . . 7 (𝐴 ∈ (-π[,]π) → π < (2 · π))
2513, 10, 16, 20, 24lelttrd 11271 . . . . . 6 (𝐴 ∈ (-π[,]π) → 𝐴 < (2 · π))
2625adantr 480 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
272, 7, 14, 15, 26eliood 45546 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
2827adantlr 715 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(2 · π)))
29 sinaover2ne0 45914 . . 3 (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0)
3028, 29syl 17 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
31 simpll 766 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ (-π[,]π))
3231, 13syl 17 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
33 0red 11115 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
34 simplr 768 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 ≠ 0)
35 simpr 484 . . . 4 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
3632, 33, 34, 35lttri5d 45348 . . 3 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
3713recnd 11140 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
3837halfcld 12366 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℂ)
39 sinneg 16055 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
4038, 39syl 17 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = -(sin‘(𝐴 / 2)))
41 2cnd 12203 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ∈ ℂ)
42 2ne0 12229 . . . . . . . . . . . 12 2 ≠ 0
4342a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → 2 ≠ 0)
4437, 41, 43divnegd 11910 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -(𝐴 / 2) = (-𝐴 / 2))
4544fveq2d 6826 . . . . . . . . 9 (𝐴 ∈ (-π[,]π) → (sin‘-(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4640, 45eqtr3d 2768 . . . . . . . 8 (𝐴 ∈ (-π[,]π) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
4746adantr 480 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) = (sin‘(-𝐴 / 2)))
481a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 ∈ ℝ*)
496a1i 11 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ*)
5013renegcld 11544 . . . . . . . . . 10 (𝐴 ∈ (-π[,]π) → -𝐴 ∈ ℝ)
5150adantr 480 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
52 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 < 0)
5313adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
5453lt0neg1d 11686 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
5552, 54mpbid 232 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → 0 < -𝐴)
565renegcli 11422 . . . . . . . . . . . . 13 -(2 · π) ∈ ℝ
5756a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) ∈ ℝ)
588a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ∈ ℝ)
594, 5ltnegi 11661 . . . . . . . . . . . . . 14 (π < (2 · π) ↔ -(2 · π) < -π)
6023, 59mpbi 230 . . . . . . . . . . . . 13 -(2 · π) < -π
6160a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < -π)
62 iccgelb 13302 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6317, 18, 11, 62syl3anc 1373 . . . . . . . . . . . . 13 (𝐴 ∈ (-π[,]π) → -π ≤ 𝐴)
6463adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -π ≤ 𝐴)
6557, 58, 53, 61, 64ltletrd 11273 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(2 · π) < 𝐴)
6657, 53ltnegd 11695 . . . . . . . . . . 11 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (-(2 · π) < 𝐴 ↔ -𝐴 < --(2 · π)))
6765, 66mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < --(2 · π))
6816recnd 11140 . . . . . . . . . . . 12 (𝐴 ∈ (-π[,]π) → (2 · π) ∈ ℂ)
6968negnegd 11463 . . . . . . . . . . 11 (𝐴 ∈ (-π[,]π) → --(2 · π) = (2 · π))
7069adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → --(2 · π) = (2 · π))
7167, 70breqtrd 5115 . . . . . . . . 9 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7248, 49, 51, 55, 71eliood 45546 . . . . . . . 8 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -𝐴 ∈ (0(,)(2 · π)))
73 sinaover2ne0 45914 . . . . . . . 8 (-𝐴 ∈ (0(,)(2 · π)) → (sin‘(-𝐴 / 2)) ≠ 0)
7472, 73syl 17 . . . . . . 7 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(-𝐴 / 2)) ≠ 0)
7547, 74eqnetrd 2995 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → -(sin‘(𝐴 / 2)) ≠ 0)
7675neneqd 2933 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ -(sin‘(𝐴 / 2)) = 0)
7738sincld 16039 . . . . . . 7 (𝐴 ∈ (-π[,]π) → (sin‘(𝐴 / 2)) ∈ ℂ)
7877adantr 480 . . . . . 6 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ∈ ℂ)
7978negeq0d 11464 . . . . 5 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ((sin‘(𝐴 / 2)) = 0 ↔ -(sin‘(𝐴 / 2)) = 0))
8076, 79mtbird 325 . . . 4 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → ¬ (sin‘(𝐴 / 2)) = 0)
8180neqned 2935 . . 3 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 < 0) → (sin‘(𝐴 / 2)) ≠ 0)
8231, 36, 81syl2anc 584 . 2 (((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) ∧ ¬ 0 < 𝐴) → (sin‘(𝐴 / 2)) ≠ 0)
8330, 82pm2.61dan 812 1 ((𝐴 ∈ (-π[,]π) ∧ 𝐴 ≠ 0) → (sin‘(𝐴 / 2)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   · cmul 11011  *cxr 11145   < clt 11146  cle 11147  -cneg 11345   / cdiv 11774  2c2 12180  +crp 12890  (,)cioo 13245  [,]cicc 13248  sincsin 15970  πcpi 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795
This theorem is referenced by:  fourierdlem56  46208  fourierdlem57  46209  fourierdlem58  46210  fourierdlem62  46214  fourierdlem66  46218  fourierdlem68  46220  fourierdlem72  46224  fourierdlem76  46228  fourierdlem78  46230  fourierdlem80  46232  fourierdlem103  46255  fourierdlem104  46256
  Copyright terms: Public domain W3C validator