![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirbtwnb | Structured version Visualization version GIF version |
Description: Point inversion preserves betweenness. Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
miriso.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
miriso.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mirbtwnb.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
Ref | Expression |
---|---|
mirbtwnb | ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | 6 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG) |
8 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴 ∈ 𝑃) |
10 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
11 | miriso.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
12 | 11 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋 ∈ 𝑃) |
13 | miriso.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
14 | 13 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ 𝑃) |
15 | mirbtwnb.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
16 | 15 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍 ∈ 𝑃) |
17 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍)) | |
18 | 1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 16, 17 | mirbtwni 28495 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑋𝐼𝑍)) → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) |
19 | 6 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → 𝐺 ∈ TarskiG) |
20 | 8 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → 𝐴 ∈ 𝑃) |
21 | 1, 2, 3, 4, 5, 19, 20, 10 | mirf 28484 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → 𝑀:𝑃⟶𝑃) |
22 | 11 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → 𝑋 ∈ 𝑃) |
23 | 21, 22 | ffvelcdmd 7100 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → (𝑀‘𝑋) ∈ 𝑃) |
24 | 13 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → 𝑌 ∈ 𝑃) |
25 | 21, 24 | ffvelcdmd 7100 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → (𝑀‘𝑌) ∈ 𝑃) |
26 | 15 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → 𝑍 ∈ 𝑃) |
27 | 21, 26 | ffvelcdmd 7100 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → (𝑀‘𝑍) ∈ 𝑃) |
28 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) | |
29 | 1, 2, 3, 4, 5, 19, 20, 10, 23, 25, 27, 28 | mirbtwni 28495 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → (𝑀‘(𝑀‘𝑌)) ∈ ((𝑀‘(𝑀‘𝑋))𝐼(𝑀‘(𝑀‘𝑍)))) |
30 | 1, 2, 3, 4, 5, 6, 8, 10, 13 | mirmir 28486 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑀‘𝑌)) = 𝑌) |
31 | 1, 2, 3, 4, 5, 6, 8, 10, 11 | mirmir 28486 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑀‘𝑋)) = 𝑋) |
32 | 1, 2, 3, 4, 5, 6, 8, 10, 15 | mirmir 28486 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑀‘𝑍)) = 𝑍) |
33 | 31, 32 | oveq12d 7444 | . . . . 5 ⊢ (𝜑 → ((𝑀‘(𝑀‘𝑋))𝐼(𝑀‘(𝑀‘𝑍))) = (𝑋𝐼𝑍)) |
34 | 30, 33 | eleq12d 2823 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑀‘𝑌)) ∈ ((𝑀‘(𝑀‘𝑋))𝐼(𝑀‘(𝑀‘𝑍))) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
35 | 34 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → ((𝑀‘(𝑀‘𝑌)) ∈ ((𝑀‘(𝑀‘𝑋))𝐼(𝑀‘(𝑀‘𝑍))) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
36 | 29, 35 | mpbid 231 | . 2 ⊢ ((𝜑 ∧ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) → 𝑌 ∈ (𝑋𝐼𝑍)) |
37 | 18, 36 | impbida 799 | 1 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 distcds 17249 TarskiGcstrkg 28251 Itvcitv 28257 LineGclng 28258 pInvGcmir 28476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-er 8731 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14330 df-word 14505 df-concat 14561 df-s1 14586 df-s2 14839 df-s3 14840 df-trkgc 28272 df-trkgb 28273 df-trkgcb 28274 df-trkg 28277 df-cgrg 28335 df-mir 28477 |
This theorem is referenced by: mirbtwnhl 28504 |
Copyright terms: Public domain | W3C validator |