MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwnb Structured version   Visualization version   GIF version

Theorem mirbtwnb 28680
Description: Point inversion preserves betweenness. Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
miriso.1 (𝜑𝑋𝑃)
miriso.2 (𝜑𝑌𝑃)
mirbtwnb.z (𝜑𝑍𝑃)
Assertion
Ref Expression
mirbtwnb (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))))

Proof of Theorem mirbtwnb
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐺 ∈ TarskiG)
8 mirval.a . . . 4 (𝜑𝐴𝑃)
98adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝐴𝑃)
10 mirfv.m . . 3 𝑀 = (𝑆𝐴)
11 miriso.1 . . . 4 (𝜑𝑋𝑃)
1211adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑋𝑃)
13 miriso.2 . . . 4 (𝜑𝑌𝑃)
1413adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌𝑃)
15 mirbtwnb.z . . . 4 (𝜑𝑍𝑃)
1615adantr 480 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑍𝑃)
17 simpr 484 . . 3 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → 𝑌 ∈ (𝑋𝐼𝑍))
181, 2, 3, 4, 5, 7, 9, 10, 12, 14, 16, 17mirbtwni 28679 . 2 ((𝜑𝑌 ∈ (𝑋𝐼𝑍)) → (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍)))
196adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → 𝐺 ∈ TarskiG)
208adantr 480 . . . 4 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → 𝐴𝑃)
211, 2, 3, 4, 5, 19, 20, 10mirf 28668 . . . . 5 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → 𝑀:𝑃𝑃)
2211adantr 480 . . . . 5 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → 𝑋𝑃)
2321, 22ffvelcdmd 7105 . . . 4 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → (𝑀𝑋) ∈ 𝑃)
2413adantr 480 . . . . 5 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → 𝑌𝑃)
2521, 24ffvelcdmd 7105 . . . 4 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → (𝑀𝑌) ∈ 𝑃)
2615adantr 480 . . . . 5 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → 𝑍𝑃)
2721, 26ffvelcdmd 7105 . . . 4 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → (𝑀𝑍) ∈ 𝑃)
28 simpr 484 . . . 4 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍)))
291, 2, 3, 4, 5, 19, 20, 10, 23, 25, 27, 28mirbtwni 28679 . . 3 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → (𝑀‘(𝑀𝑌)) ∈ ((𝑀‘(𝑀𝑋))𝐼(𝑀‘(𝑀𝑍))))
301, 2, 3, 4, 5, 6, 8, 10, 13mirmir 28670 . . . . 5 (𝜑 → (𝑀‘(𝑀𝑌)) = 𝑌)
311, 2, 3, 4, 5, 6, 8, 10, 11mirmir 28670 . . . . . 6 (𝜑 → (𝑀‘(𝑀𝑋)) = 𝑋)
321, 2, 3, 4, 5, 6, 8, 10, 15mirmir 28670 . . . . . 6 (𝜑 → (𝑀‘(𝑀𝑍)) = 𝑍)
3331, 32oveq12d 7449 . . . . 5 (𝜑 → ((𝑀‘(𝑀𝑋))𝐼(𝑀‘(𝑀𝑍))) = (𝑋𝐼𝑍))
3430, 33eleq12d 2835 . . . 4 (𝜑 → ((𝑀‘(𝑀𝑌)) ∈ ((𝑀‘(𝑀𝑋))𝐼(𝑀‘(𝑀𝑍))) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
3534adantr 480 . . 3 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → ((𝑀‘(𝑀𝑌)) ∈ ((𝑀‘(𝑀𝑋))𝐼(𝑀‘(𝑀𝑍))) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
3629, 35mpbid 232 . 2 ((𝜑 ∧ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))) → 𝑌 ∈ (𝑋𝐼𝑍))
3718, 36impbida 801 1 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441  LineGclng 28442  pInvGcmir 28660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkg 28461  df-cgrg 28519  df-mir 28661
This theorem is referenced by:  mirbtwnhl  28688
  Copyright terms: Public domain W3C validator