![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirbtwni | Structured version Visualization version GIF version |
Description: Point inversion preserves betweenness, first half of Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
miriso.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
miriso.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mirbtwni.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
mirbtwni.b | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) |
Ref | Expression |
---|---|
mirbtwni | ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | eqid 2826 | . 2 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
5 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | miriso.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
7 | miriso.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
8 | mirbtwni.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
10 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
11 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
12 | mirfv.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐴) | |
13 | 1, 2, 3, 9, 10, 5, 11, 12 | mirf 25973 | . . 3 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
14 | 13, 6 | ffvelrnd 6610 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
15 | 13, 7 | ffvelrnd 6610 | . 2 ⊢ (𝜑 → (𝑀‘𝑌) ∈ 𝑃) |
16 | 13, 8 | ffvelrnd 6610 | . 2 ⊢ (𝜑 → (𝑀‘𝑍) ∈ 𝑃) |
17 | 1, 2, 3, 9, 10, 5, 11, 12, 6, 7 | miriso 25983 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = (𝑋 − 𝑌)) |
18 | 17 | eqcomd 2832 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) = ((𝑀‘𝑋) − (𝑀‘𝑌))) |
19 | 1, 2, 3, 9, 10, 5, 11, 12, 7, 8 | miriso 25983 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑌) − (𝑀‘𝑍)) = (𝑌 − 𝑍)) |
20 | 19 | eqcomd 2832 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) = ((𝑀‘𝑌) − (𝑀‘𝑍))) |
21 | 1, 2, 3, 9, 10, 5, 11, 12, 8, 6 | miriso 25983 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑍) − (𝑀‘𝑋)) = (𝑍 − 𝑋)) |
22 | 21 | eqcomd 2832 | . . 3 ⊢ (𝜑 → (𝑍 − 𝑋) = ((𝑀‘𝑍) − (𝑀‘𝑋))) |
23 | 1, 2, 4, 5, 6, 7, 8, 14, 15, 16, 18, 20, 22 | trgcgr 25829 | . 2 ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉(cgrG‘𝐺)〈“(𝑀‘𝑋)(𝑀‘𝑌)(𝑀‘𝑍)”〉) |
24 | mirbtwni.b | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 23, 24 | tgbtwnxfr 25843 | 1 ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ‘cfv 6124 (class class class)co 6906 Basecbs 16223 distcds 16315 TarskiGcstrkg 25743 Itvcitv 25749 LineGclng 25750 cgrGccgrg 25823 pInvGcmir 25965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-pm 8126 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-cda 9306 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-n0 11620 df-xnn0 11692 df-z 11706 df-uz 11970 df-fz 12621 df-fzo 12762 df-hash 13412 df-word 13576 df-concat 13632 df-s1 13657 df-s2 13970 df-s3 13971 df-trkgc 25761 df-trkgb 25762 df-trkgcb 25763 df-trkg 25766 df-cgrg 25824 df-mir 25966 |
This theorem is referenced by: mirbtwnb 25985 mirmir2 25987 mirhl 25992 mirauto 25997 krippenlem 26003 colperpexlem1 26040 opphllem2 26058 |
Copyright terms: Public domain | W3C validator |