MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwni Structured version   Visualization version   GIF version

Theorem mirbtwni 28697
Description: Point inversion preserves betweenness, first half of Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
miriso.1 (𝜑𝑋𝑃)
miriso.2 (𝜑𝑌𝑃)
mirbtwni.z (𝜑𝑍𝑃)
mirbtwni.b (𝜑𝑌 ∈ (𝑋𝐼𝑍))
Assertion
Ref Expression
mirbtwni (𝜑 → (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍)))

Proof of Theorem mirbtwni
StepHypRef Expression
1 mirval.p . 2 𝑃 = (Base‘𝐺)
2 mirval.d . 2 = (dist‘𝐺)
3 mirval.i . 2 𝐼 = (Itv‘𝐺)
4 eqid 2740 . 2 (cgrG‘𝐺) = (cgrG‘𝐺)
5 mirval.g . 2 (𝜑𝐺 ∈ TarskiG)
6 miriso.1 . 2 (𝜑𝑋𝑃)
7 miriso.2 . 2 (𝜑𝑌𝑃)
8 mirbtwni.z . 2 (𝜑𝑍𝑃)
9 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
10 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
11 mirval.a . . . 4 (𝜑𝐴𝑃)
12 mirfv.m . . . 4 𝑀 = (𝑆𝐴)
131, 2, 3, 9, 10, 5, 11, 12mirf 28686 . . 3 (𝜑𝑀:𝑃𝑃)
1413, 6ffvelcdmd 7119 . 2 (𝜑 → (𝑀𝑋) ∈ 𝑃)
1513, 7ffvelcdmd 7119 . 2 (𝜑 → (𝑀𝑌) ∈ 𝑃)
1613, 8ffvelcdmd 7119 . 2 (𝜑 → (𝑀𝑍) ∈ 𝑃)
171, 2, 3, 9, 10, 5, 11, 12, 6, 7miriso 28696 . . . 4 (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1817eqcomd 2746 . . 3 (𝜑 → (𝑋 𝑌) = ((𝑀𝑋) (𝑀𝑌)))
191, 2, 3, 9, 10, 5, 11, 12, 7, 8miriso 28696 . . . 4 (𝜑 → ((𝑀𝑌) (𝑀𝑍)) = (𝑌 𝑍))
2019eqcomd 2746 . . 3 (𝜑 → (𝑌 𝑍) = ((𝑀𝑌) (𝑀𝑍)))
211, 2, 3, 9, 10, 5, 11, 12, 8, 6miriso 28696 . . . 4 (𝜑 → ((𝑀𝑍) (𝑀𝑋)) = (𝑍 𝑋))
2221eqcomd 2746 . . 3 (𝜑 → (𝑍 𝑋) = ((𝑀𝑍) (𝑀𝑋)))
231, 2, 4, 5, 6, 7, 8, 14, 15, 16, 18, 20, 22trgcgr 28542 . 2 (𝜑 → ⟨“𝑋𝑌𝑍”⟩(cgrG‘𝐺)⟨“(𝑀𝑋)(𝑀𝑌)(𝑀𝑍)”⟩)
24 mirbtwni.b . 2 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
251, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 23, 24tgbtwnxfr 28556 1 (𝜑 → (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  cgrGccgrg 28536  pInvGcmir 28678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537  df-mir 28679
This theorem is referenced by:  mirbtwnb  28698  mirmir2  28700  mirhl  28705  mirauto  28710  krippenlem  28716  colperpexlem1  28756  opphllem2  28774
  Copyright terms: Public domain W3C validator