MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwni Structured version   Visualization version   GIF version

Theorem mirbtwni 28655
Description: Point inversion preserves betweenness, first half of Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
miriso.1 (𝜑𝑋𝑃)
miriso.2 (𝜑𝑌𝑃)
mirbtwni.z (𝜑𝑍𝑃)
mirbtwni.b (𝜑𝑌 ∈ (𝑋𝐼𝑍))
Assertion
Ref Expression
mirbtwni (𝜑 → (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍)))

Proof of Theorem mirbtwni
StepHypRef Expression
1 mirval.p . 2 𝑃 = (Base‘𝐺)
2 mirval.d . 2 = (dist‘𝐺)
3 mirval.i . 2 𝐼 = (Itv‘𝐺)
4 eqid 2736 . 2 (cgrG‘𝐺) = (cgrG‘𝐺)
5 mirval.g . 2 (𝜑𝐺 ∈ TarskiG)
6 miriso.1 . 2 (𝜑𝑋𝑃)
7 miriso.2 . 2 (𝜑𝑌𝑃)
8 mirbtwni.z . 2 (𝜑𝑍𝑃)
9 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
10 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
11 mirval.a . . . 4 (𝜑𝐴𝑃)
12 mirfv.m . . . 4 𝑀 = (𝑆𝐴)
131, 2, 3, 9, 10, 5, 11, 12mirf 28644 . . 3 (𝜑𝑀:𝑃𝑃)
1413, 6ffvelcdmd 7080 . 2 (𝜑 → (𝑀𝑋) ∈ 𝑃)
1513, 7ffvelcdmd 7080 . 2 (𝜑 → (𝑀𝑌) ∈ 𝑃)
1613, 8ffvelcdmd 7080 . 2 (𝜑 → (𝑀𝑍) ∈ 𝑃)
171, 2, 3, 9, 10, 5, 11, 12, 6, 7miriso 28654 . . . 4 (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1817eqcomd 2742 . . 3 (𝜑 → (𝑋 𝑌) = ((𝑀𝑋) (𝑀𝑌)))
191, 2, 3, 9, 10, 5, 11, 12, 7, 8miriso 28654 . . . 4 (𝜑 → ((𝑀𝑌) (𝑀𝑍)) = (𝑌 𝑍))
2019eqcomd 2742 . . 3 (𝜑 → (𝑌 𝑍) = ((𝑀𝑌) (𝑀𝑍)))
211, 2, 3, 9, 10, 5, 11, 12, 8, 6miriso 28654 . . . 4 (𝜑 → ((𝑀𝑍) (𝑀𝑋)) = (𝑍 𝑋))
2221eqcomd 2742 . . 3 (𝜑 → (𝑍 𝑋) = ((𝑀𝑍) (𝑀𝑋)))
231, 2, 4, 5, 6, 7, 8, 14, 15, 16, 18, 20, 22trgcgr 28500 . 2 (𝜑 → ⟨“𝑋𝑌𝑍”⟩(cgrG‘𝐺)⟨“(𝑀𝑋)(𝑀𝑌)(𝑀𝑍)”⟩)
24 mirbtwni.b . 2 (𝜑𝑌 ∈ (𝑋𝐼𝑍))
251, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 23, 24tgbtwnxfr 28514 1 (𝜑 → (𝑀𝑌) ∈ ((𝑀𝑋)𝐼(𝑀𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418  cgrGccgrg 28494  pInvGcmir 28636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-s2 14872  df-s3 14873  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkg 28437  df-cgrg 28495  df-mir 28637
This theorem is referenced by:  mirbtwnb  28656  mirmir2  28658  mirhl  28663  mirauto  28668  krippenlem  28674  colperpexlem1  28714  opphllem2  28732
  Copyright terms: Public domain W3C validator