![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirbtwni | Structured version Visualization version GIF version |
Description: Point inversion preserves betweenness, first half of Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
miriso.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
miriso.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mirbtwni.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
mirbtwni.b | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) |
Ref | Expression |
---|---|
mirbtwni | ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | eqid 2740 | . 2 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
5 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | miriso.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
7 | miriso.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
8 | mirbtwni.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
10 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
11 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
12 | mirfv.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐴) | |
13 | 1, 2, 3, 9, 10, 5, 11, 12 | mirf 28686 | . . 3 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
14 | 13, 6 | ffvelcdmd 7119 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
15 | 13, 7 | ffvelcdmd 7119 | . 2 ⊢ (𝜑 → (𝑀‘𝑌) ∈ 𝑃) |
16 | 13, 8 | ffvelcdmd 7119 | . 2 ⊢ (𝜑 → (𝑀‘𝑍) ∈ 𝑃) |
17 | 1, 2, 3, 9, 10, 5, 11, 12, 6, 7 | miriso 28696 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = (𝑋 − 𝑌)) |
18 | 17 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) = ((𝑀‘𝑋) − (𝑀‘𝑌))) |
19 | 1, 2, 3, 9, 10, 5, 11, 12, 7, 8 | miriso 28696 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑌) − (𝑀‘𝑍)) = (𝑌 − 𝑍)) |
20 | 19 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) = ((𝑀‘𝑌) − (𝑀‘𝑍))) |
21 | 1, 2, 3, 9, 10, 5, 11, 12, 8, 6 | miriso 28696 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑍) − (𝑀‘𝑋)) = (𝑍 − 𝑋)) |
22 | 21 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (𝑍 − 𝑋) = ((𝑀‘𝑍) − (𝑀‘𝑋))) |
23 | 1, 2, 4, 5, 6, 7, 8, 14, 15, 16, 18, 20, 22 | trgcgr 28542 | . 2 ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉(cgrG‘𝐺)〈“(𝑀‘𝑋)(𝑀‘𝑌)(𝑀‘𝑍)”〉) |
24 | mirbtwni.b | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 23, 24 | tgbtwnxfr 28556 | 1 ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 cgrGccgrg 28536 pInvGcmir 28678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 df-cgrg 28537 df-mir 28679 |
This theorem is referenced by: mirbtwnb 28698 mirmir2 28700 mirhl 28705 mirauto 28710 krippenlem 28716 colperpexlem1 28756 opphllem2 28774 |
Copyright terms: Public domain | W3C validator |