| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirbtwni | Structured version Visualization version GIF version | ||
| Description: Point inversion preserves betweenness, first half of Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| miriso.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| miriso.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| mirbtwni.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| mirbtwni.b | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) |
| Ref | Expression |
|---|---|
| mirbtwni | ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | eqid 2734 | . 2 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
| 5 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | miriso.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 7 | miriso.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 8 | mirbtwni.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 9 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 10 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 11 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | mirfv.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 13 | 1, 2, 3, 9, 10, 5, 11, 12 | mirf 28605 | . . 3 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| 14 | 13, 6 | ffvelcdmd 7085 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
| 15 | 13, 7 | ffvelcdmd 7085 | . 2 ⊢ (𝜑 → (𝑀‘𝑌) ∈ 𝑃) |
| 16 | 13, 8 | ffvelcdmd 7085 | . 2 ⊢ (𝜑 → (𝑀‘𝑍) ∈ 𝑃) |
| 17 | 1, 2, 3, 9, 10, 5, 11, 12, 6, 7 | miriso 28615 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = (𝑋 − 𝑌)) |
| 18 | 17 | eqcomd 2740 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) = ((𝑀‘𝑋) − (𝑀‘𝑌))) |
| 19 | 1, 2, 3, 9, 10, 5, 11, 12, 7, 8 | miriso 28615 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑌) − (𝑀‘𝑍)) = (𝑌 − 𝑍)) |
| 20 | 19 | eqcomd 2740 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) = ((𝑀‘𝑌) − (𝑀‘𝑍))) |
| 21 | 1, 2, 3, 9, 10, 5, 11, 12, 8, 6 | miriso 28615 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑍) − (𝑀‘𝑋)) = (𝑍 − 𝑋)) |
| 22 | 21 | eqcomd 2740 | . . 3 ⊢ (𝜑 → (𝑍 − 𝑋) = ((𝑀‘𝑍) − (𝑀‘𝑋))) |
| 23 | 1, 2, 4, 5, 6, 7, 8, 14, 15, 16, 18, 20, 22 | trgcgr 28461 | . 2 ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉(cgrG‘𝐺)〈“(𝑀‘𝑋)(𝑀‘𝑌)(𝑀‘𝑍)”〉) |
| 24 | mirbtwni.b | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) | |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 23, 24 | tgbtwnxfr 28475 | 1 ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 distcds 17283 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 cgrGccgrg 28455 pInvGcmir 28597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-er 8727 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-s2 14870 df-s3 14871 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 df-cgrg 28456 df-mir 28598 |
| This theorem is referenced by: mirbtwnb 28617 mirmir2 28619 mirhl 28624 mirauto 28629 krippenlem 28635 colperpexlem1 28675 opphllem2 28693 |
| Copyright terms: Public domain | W3C validator |