![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirbtwni | Structured version Visualization version GIF version |
Description: Point inversion preserves betweenness, first half of Theorem 7.15 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 9-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
miriso.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
miriso.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
mirbtwni.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
mirbtwni.b | ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) |
Ref | Expression |
---|---|
mirbtwni | ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | eqid 2736 | . 2 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
5 | mirval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | miriso.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
7 | miriso.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
8 | mirbtwni.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
10 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
11 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
12 | mirfv.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐴) | |
13 | 1, 2, 3, 9, 10, 5, 11, 12 | mirf 27311 | . . 3 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
14 | 13, 6 | ffvelcdmd 7019 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
15 | 13, 7 | ffvelcdmd 7019 | . 2 ⊢ (𝜑 → (𝑀‘𝑌) ∈ 𝑃) |
16 | 13, 8 | ffvelcdmd 7019 | . 2 ⊢ (𝜑 → (𝑀‘𝑍) ∈ 𝑃) |
17 | 1, 2, 3, 9, 10, 5, 11, 12, 6, 7 | miriso 27321 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = (𝑋 − 𝑌)) |
18 | 17 | eqcomd 2742 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) = ((𝑀‘𝑋) − (𝑀‘𝑌))) |
19 | 1, 2, 3, 9, 10, 5, 11, 12, 7, 8 | miriso 27321 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑌) − (𝑀‘𝑍)) = (𝑌 − 𝑍)) |
20 | 19 | eqcomd 2742 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) = ((𝑀‘𝑌) − (𝑀‘𝑍))) |
21 | 1, 2, 3, 9, 10, 5, 11, 12, 8, 6 | miriso 27321 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑍) − (𝑀‘𝑋)) = (𝑍 − 𝑋)) |
22 | 21 | eqcomd 2742 | . . 3 ⊢ (𝜑 → (𝑍 − 𝑋) = ((𝑀‘𝑍) − (𝑀‘𝑋))) |
23 | 1, 2, 4, 5, 6, 7, 8, 14, 15, 16, 18, 20, 22 | trgcgr 27167 | . 2 ⊢ (𝜑 → 〈“𝑋𝑌𝑍”〉(cgrG‘𝐺)〈“(𝑀‘𝑋)(𝑀‘𝑌)(𝑀‘𝑍)”〉) |
24 | mirbtwni.b | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑋𝐼𝑍)) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 23, 24 | tgbtwnxfr 27181 | 1 ⊢ (𝜑 → (𝑀‘𝑌) ∈ ((𝑀‘𝑋)𝐼(𝑀‘𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6480 (class class class)co 7338 Basecbs 17010 distcds 17069 TarskiGcstrkg 27078 Itvcitv 27084 LineGclng 27085 cgrGccgrg 27161 pInvGcmir 27303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-oadd 8372 df-er 8570 df-pm 8690 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-dju 9759 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-n0 12336 df-xnn0 12408 df-z 12422 df-uz 12685 df-fz 13342 df-fzo 13485 df-hash 14147 df-word 14319 df-concat 14375 df-s1 14401 df-s2 14661 df-s3 14662 df-trkgc 27099 df-trkgb 27100 df-trkgcb 27101 df-trkg 27104 df-cgrg 27162 df-mir 27304 |
This theorem is referenced by: mirbtwnb 27323 mirmir2 27325 mirhl 27330 mirauto 27335 krippenlem 27341 colperpexlem1 27381 opphllem2 27399 |
Copyright terms: Public domain | W3C validator |