![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > miduniq2 | Structured version Visualization version GIF version |
Description: If two point inversions commute, they are identical. Theorem 7.19 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
miduniq2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
miduniq2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
miduniq2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
miduniq2.e | ⊢ (𝜑 → ((𝑆‘𝐴)‘((𝑆‘𝐵)‘𝑋)) = ((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) |
Ref | Expression |
---|---|
miduniq2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | miduniq2.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | eqid 2735 | . . . . . 6 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 28683 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐵):𝑃⟶𝑃) |
10 | miduniq2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 9, 10 | ffvelcdmd 7105 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐴) ∈ 𝑃) |
12 | miduniq2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
13 | eqid 2735 | . . . . . 6 ⊢ ((𝑆‘𝐵)‘𝐴) = ((𝑆‘𝐵)‘𝐴) | |
14 | eqid 2735 | . . . . . 6 ⊢ ((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋)) = ((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋)) | |
15 | eqid 2735 | . . . . . 6 ⊢ ((𝑆‘𝐵)‘((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) = ((𝑆‘𝐵)‘((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) | |
16 | 9, 12 | ffvelcdmd 7105 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) ∈ 𝑃) |
17 | eqid 2735 | . . . . . . . 8 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
18 | 1, 2, 3, 4, 5, 6, 10, 17, 12 | mircl 28684 | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) ∈ 𝑃) |
19 | 9, 18 | ffvelcdmd 7105 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋)) ∈ 𝑃) |
20 | miduniq2.e | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘((𝑆‘𝐵)‘𝑋)) = ((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) | |
21 | 1, 2, 3, 4, 5, 6, 8, 13, 14, 15, 7, 10, 16, 19, 20 | mirauto 28707 | . . . . 5 ⊢ (𝜑 → ((𝑆‘((𝑆‘𝐵)‘𝐴))‘((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋))) = ((𝑆‘𝐵)‘((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋)))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 12 | mirmir 28685 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋)) = 𝑋) |
23 | 22 | fveq2d 6911 | . . . . 5 ⊢ (𝜑 → ((𝑆‘((𝑆‘𝐵)‘𝐴))‘((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋))) = ((𝑆‘((𝑆‘𝐵)‘𝐴))‘𝑋)) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 18 | mirmir 28685 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝐵)‘((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) = ((𝑆‘𝐴)‘𝑋)) |
25 | 21, 23, 24 | 3eqtr3d 2783 | . . . 4 ⊢ (𝜑 → ((𝑆‘((𝑆‘𝐵)‘𝐴))‘𝑋) = ((𝑆‘𝐴)‘𝑋)) |
26 | 1, 2, 3, 4, 5, 6, 11, 10, 12, 25 | miduniq1 28709 | . . 3 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐴) = 𝐴) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | mirinv 28689 | . . 3 ⊢ (𝜑 → (((𝑆‘𝐵)‘𝐴) = 𝐴 ↔ 𝐵 = 𝐴)) |
28 | 26, 27 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
29 | 28 | eqcomd 2741 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 Basecbs 17245 distcds 17307 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 pInvGcmir 28675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-s2 14884 df-s3 14885 df-trkgc 28471 df-trkgb 28472 df-trkgcb 28473 df-trkg 28476 df-cgrg 28534 df-mir 28676 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |