MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  miduniq2 Structured version   Visualization version   GIF version

Theorem miduniq2 26481
Description: If two point inversions commute, they are identical. Theorem 7.19 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
miduniq2.a (𝜑𝐴𝑃)
miduniq2.b (𝜑𝐵𝑃)
miduniq2.x (𝜑𝑋𝑃)
miduniq2.e (𝜑 → ((𝑆𝐴)‘((𝑆𝐵)‘𝑋)) = ((𝑆𝐵)‘((𝑆𝐴)‘𝑋)))
Assertion
Ref Expression
miduniq2 (𝜑𝐴 = 𝐵)

Proof of Theorem miduniq2
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.d . . . 4 = (dist‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
5 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
7 miduniq2.b . . . . . 6 (𝜑𝐵𝑃)
8 eqid 2798 . . . . . 6 (𝑆𝐵) = (𝑆𝐵)
91, 2, 3, 4, 5, 6, 7, 8mirf 26454 . . . . 5 (𝜑 → (𝑆𝐵):𝑃𝑃)
10 miduniq2.a . . . . 5 (𝜑𝐴𝑃)
119, 10ffvelrnd 6829 . . . 4 (𝜑 → ((𝑆𝐵)‘𝐴) ∈ 𝑃)
12 miduniq2.x . . . 4 (𝜑𝑋𝑃)
13 eqid 2798 . . . . . 6 ((𝑆𝐵)‘𝐴) = ((𝑆𝐵)‘𝐴)
14 eqid 2798 . . . . . 6 ((𝑆𝐵)‘((𝑆𝐵)‘𝑋)) = ((𝑆𝐵)‘((𝑆𝐵)‘𝑋))
15 eqid 2798 . . . . . 6 ((𝑆𝐵)‘((𝑆𝐵)‘((𝑆𝐴)‘𝑋))) = ((𝑆𝐵)‘((𝑆𝐵)‘((𝑆𝐴)‘𝑋)))
169, 12ffvelrnd 6829 . . . . . 6 (𝜑 → ((𝑆𝐵)‘𝑋) ∈ 𝑃)
17 eqid 2798 . . . . . . . 8 (𝑆𝐴) = (𝑆𝐴)
181, 2, 3, 4, 5, 6, 10, 17, 12mircl 26455 . . . . . . 7 (𝜑 → ((𝑆𝐴)‘𝑋) ∈ 𝑃)
199, 18ffvelrnd 6829 . . . . . 6 (𝜑 → ((𝑆𝐵)‘((𝑆𝐴)‘𝑋)) ∈ 𝑃)
20 miduniq2.e . . . . . 6 (𝜑 → ((𝑆𝐴)‘((𝑆𝐵)‘𝑋)) = ((𝑆𝐵)‘((𝑆𝐴)‘𝑋)))
211, 2, 3, 4, 5, 6, 8, 13, 14, 15, 7, 10, 16, 19, 20mirauto 26478 . . . . 5 (𝜑 → ((𝑆‘((𝑆𝐵)‘𝐴))‘((𝑆𝐵)‘((𝑆𝐵)‘𝑋))) = ((𝑆𝐵)‘((𝑆𝐵)‘((𝑆𝐴)‘𝑋))))
221, 2, 3, 4, 5, 6, 7, 8, 12mirmir 26456 . . . . . 6 (𝜑 → ((𝑆𝐵)‘((𝑆𝐵)‘𝑋)) = 𝑋)
2322fveq2d 6649 . . . . 5 (𝜑 → ((𝑆‘((𝑆𝐵)‘𝐴))‘((𝑆𝐵)‘((𝑆𝐵)‘𝑋))) = ((𝑆‘((𝑆𝐵)‘𝐴))‘𝑋))
241, 2, 3, 4, 5, 6, 7, 8, 18mirmir 26456 . . . . 5 (𝜑 → ((𝑆𝐵)‘((𝑆𝐵)‘((𝑆𝐴)‘𝑋))) = ((𝑆𝐴)‘𝑋))
2521, 23, 243eqtr3d 2841 . . . 4 (𝜑 → ((𝑆‘((𝑆𝐵)‘𝐴))‘𝑋) = ((𝑆𝐴)‘𝑋))
261, 2, 3, 4, 5, 6, 11, 10, 12, 25miduniq1 26480 . . 3 (𝜑 → ((𝑆𝐵)‘𝐴) = 𝐴)
271, 2, 3, 4, 5, 6, 7, 8, 10mirinv 26460 . . 3 (𝜑 → (((𝑆𝐵)‘𝐴) = 𝐴𝐵 = 𝐴))
2826, 27mpbid 235 . 2 (𝜑𝐵 = 𝐴)
2928eqcomd 2804 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cfv 6324  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  pInvGcmir 26446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-mir 26447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator