Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > miduniq2 | Structured version Visualization version GIF version |
Description: If two point inversions commute, they are identical. Theorem 7.19 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
miduniq2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
miduniq2.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
miduniq2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
miduniq2.e | ⊢ (𝜑 → ((𝑆‘𝐴)‘((𝑆‘𝐵)‘𝑋)) = ((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) |
Ref | Expression |
---|---|
miduniq2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | miduniq2.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | eqid 2737 | . . . . . 6 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 27309 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐵):𝑃⟶𝑃) |
10 | miduniq2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 9, 10 | ffvelcdmd 7022 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐴) ∈ 𝑃) |
12 | miduniq2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
13 | eqid 2737 | . . . . . 6 ⊢ ((𝑆‘𝐵)‘𝐴) = ((𝑆‘𝐵)‘𝐴) | |
14 | eqid 2737 | . . . . . 6 ⊢ ((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋)) = ((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋)) | |
15 | eqid 2737 | . . . . . 6 ⊢ ((𝑆‘𝐵)‘((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) = ((𝑆‘𝐵)‘((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) | |
16 | 9, 12 | ffvelcdmd 7022 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) ∈ 𝑃) |
17 | eqid 2737 | . . . . . . . 8 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
18 | 1, 2, 3, 4, 5, 6, 10, 17, 12 | mircl 27310 | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) ∈ 𝑃) |
19 | 9, 18 | ffvelcdmd 7022 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋)) ∈ 𝑃) |
20 | miduniq2.e | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘((𝑆‘𝐵)‘𝑋)) = ((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) | |
21 | 1, 2, 3, 4, 5, 6, 8, 13, 14, 15, 7, 10, 16, 19, 20 | mirauto 27333 | . . . . 5 ⊢ (𝜑 → ((𝑆‘((𝑆‘𝐵)‘𝐴))‘((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋))) = ((𝑆‘𝐵)‘((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋)))) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 12 | mirmir 27311 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋)) = 𝑋) |
23 | 22 | fveq2d 6833 | . . . . 5 ⊢ (𝜑 → ((𝑆‘((𝑆‘𝐵)‘𝐴))‘((𝑆‘𝐵)‘((𝑆‘𝐵)‘𝑋))) = ((𝑆‘((𝑆‘𝐵)‘𝐴))‘𝑋)) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 18 | mirmir 27311 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝐵)‘((𝑆‘𝐵)‘((𝑆‘𝐴)‘𝑋))) = ((𝑆‘𝐴)‘𝑋)) |
25 | 21, 23, 24 | 3eqtr3d 2785 | . . . 4 ⊢ (𝜑 → ((𝑆‘((𝑆‘𝐵)‘𝐴))‘𝑋) = ((𝑆‘𝐴)‘𝑋)) |
26 | 1, 2, 3, 4, 5, 6, 11, 10, 12, 25 | miduniq1 27335 | . . 3 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝐴) = 𝐴) |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | mirinv 27315 | . . 3 ⊢ (𝜑 → (((𝑆‘𝐵)‘𝐴) = 𝐴 ↔ 𝐵 = 𝐴)) |
28 | 26, 27 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
29 | 28 | eqcomd 2743 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6483 Basecbs 17009 distcds 17068 TarskiGcstrkg 27076 Itvcitv 27082 LineGclng 27083 pInvGcmir 27301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-oadd 8375 df-er 8573 df-pm 8693 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-dju 9762 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-xnn0 12411 df-z 12425 df-uz 12688 df-fz 13345 df-fzo 13488 df-hash 14150 df-word 14322 df-concat 14378 df-s1 14403 df-s2 14660 df-s3 14661 df-trkgc 27097 df-trkgb 27098 df-trkgcb 27099 df-trkg 27102 df-cgrg 27160 df-mir 27302 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |