|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nadd4 | Structured version Visualization version GIF version | ||
| Description: Rearragement of terms in a quadruple sum. (Contributed by Scott Fenton, 5-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| nadd4 | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷)) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nadd32 8736 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵)) | |
| 2 | 1 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵)) | 
| 3 | 2 | adantrr 717 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵)) | 
| 4 | 3 | oveq1d 7447 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (((𝐴 +no 𝐵) +no 𝐶) +no 𝐷) = (((𝐴 +no 𝐶) +no 𝐵) +no 𝐷)) | 
| 5 | naddcl 8716 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 +no 𝐵) ∈ On) | 
| 7 | simprl 770 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ∈ On) | |
| 8 | simprr 772 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On) | |
| 9 | naddass 8735 | . . 3 ⊢ (((𝐴 +no 𝐵) ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On) → (((𝐴 +no 𝐵) +no 𝐶) +no 𝐷) = ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷))) | |
| 10 | 6, 7, 8, 9 | syl3anc 1372 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (((𝐴 +no 𝐵) +no 𝐶) +no 𝐷) = ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷))) | 
| 11 | naddcl 8716 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) ∈ On) | |
| 12 | 11 | ad2ant2r 747 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 +no 𝐶) ∈ On) | 
| 13 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐵 ∈ On) | |
| 14 | naddass 8735 | . . 3 ⊢ (((𝐴 +no 𝐶) ∈ On ∧ 𝐵 ∈ On ∧ 𝐷 ∈ On) → (((𝐴 +no 𝐶) +no 𝐵) +no 𝐷) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷))) | |
| 15 | 12, 13, 8, 14 | syl3anc 1372 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (((𝐴 +no 𝐶) +no 𝐵) +no 𝐷) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷))) | 
| 16 | 4, 10, 15 | 3eqtr3d 2784 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷)) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Oncon0 6383 (class class class)co 7432 +no cnadd 8704 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-ot 4634 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-frecs 8307 df-nadd 8705 | 
| This theorem is referenced by: nadd42 8738 | 
| Copyright terms: Public domain | W3C validator |