MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nadd4 Structured version   Visualization version   GIF version

Theorem nadd4 8639
Description: Rearragement of terms in a quadruple sum. (Contributed by Scott Fenton, 5-Feb-2025.)
Assertion
Ref Expression
nadd4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷)) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷)))

Proof of Theorem nadd4
StepHypRef Expression
1 nadd32 8638 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵))
213expa 1118 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵))
32adantrr 717 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵))
43oveq1d 7384 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (((𝐴 +no 𝐵) +no 𝐶) +no 𝐷) = (((𝐴 +no 𝐶) +no 𝐵) +no 𝐷))
5 naddcl 8618 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On)
65adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 +no 𝐵) ∈ On)
7 simprl 770 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ∈ On)
8 simprr 772 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On)
9 naddass 8637 . . 3 (((𝐴 +no 𝐵) ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On) → (((𝐴 +no 𝐵) +no 𝐶) +no 𝐷) = ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷)))
106, 7, 8, 9syl3anc 1373 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (((𝐴 +no 𝐵) +no 𝐶) +no 𝐷) = ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷)))
11 naddcl 8618 . . . 4 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) ∈ On)
1211ad2ant2r 747 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 +no 𝐶) ∈ On)
13 simplr 768 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐵 ∈ On)
14 naddass 8637 . . 3 (((𝐴 +no 𝐶) ∈ On ∧ 𝐵 ∈ On ∧ 𝐷 ∈ On) → (((𝐴 +no 𝐶) +no 𝐵) +no 𝐷) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷)))
1512, 13, 8, 14syl3anc 1373 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (((𝐴 +no 𝐶) +no 𝐵) +no 𝐷) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷)))
164, 10, 153eqtr3d 2772 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷)) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Oncon0 6320  (class class class)co 7369   +no cnadd 8606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-nadd 8607
This theorem is referenced by:  nadd42  8640
  Copyright terms: Public domain W3C validator