| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nadd4 | Structured version Visualization version GIF version | ||
| Description: Rearragement of terms in a quadruple sum. (Contributed by Scott Fenton, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| nadd4 | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷)) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nadd32 8612 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵)) | |
| 2 | 1 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵)) |
| 3 | 2 | adantrr 717 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵)) |
| 4 | 3 | oveq1d 7361 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (((𝐴 +no 𝐵) +no 𝐶) +no 𝐷) = (((𝐴 +no 𝐶) +no 𝐵) +no 𝐷)) |
| 5 | naddcl 8592 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 +no 𝐵) ∈ On) |
| 7 | simprl 770 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ∈ On) | |
| 8 | simprr 772 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On) | |
| 9 | naddass 8611 | . . 3 ⊢ (((𝐴 +no 𝐵) ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On) → (((𝐴 +no 𝐵) +no 𝐶) +no 𝐷) = ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷))) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (((𝐴 +no 𝐵) +no 𝐶) +no 𝐷) = ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷))) |
| 11 | naddcl 8592 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) ∈ On) | |
| 12 | 11 | ad2ant2r 747 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 +no 𝐶) ∈ On) |
| 13 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐵 ∈ On) | |
| 14 | naddass 8611 | . . 3 ⊢ (((𝐴 +no 𝐶) ∈ On ∧ 𝐵 ∈ On ∧ 𝐷 ∈ On) → (((𝐴 +no 𝐶) +no 𝐵) +no 𝐷) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷))) | |
| 15 | 12, 13, 8, 14 | syl3anc 1373 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (((𝐴 +no 𝐶) +no 𝐵) +no 𝐷) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷))) |
| 16 | 4, 10, 15 | 3eqtr3d 2774 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 +no 𝐵) +no (𝐶 +no 𝐷)) = ((𝐴 +no 𝐶) +no (𝐵 +no 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Oncon0 6306 (class class class)co 7346 +no cnadd 8580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-nadd 8581 |
| This theorem is referenced by: nadd42 8614 |
| Copyright terms: Public domain | W3C validator |