MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddcl Structured version   Visualization version   GIF version

Theorem naddcl 8676
Description: Closure law for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On)

Proof of Theorem naddcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 naddcllem 8675 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
21simpld 496 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3433  wss 3949  {csn 4629   cint 4951   × cxp 5675  cima 5680  Oncon0 6365  (class class class)co 7409   +no cnadd 8664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-frecs 8266  df-nadd 8665
This theorem is referenced by:  naddf  8680  naddssim  8684  naddel1  8686  naddss1  8688  naddasslem1  8693  naddasslem2  8694  nadd4  8697  naddel12  8699  addsproplem2  27454  addsprop  27460  mulsproplem5  27576  mulsproplem6  27577  mulsproplem7  27578  mulsproplem8  27579  mulsprop  27586  naddsuc2  42143  naddass1  42144  naddgeoa  42145  naddwordnexlem4  42152
  Copyright terms: Public domain W3C validator