![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nadd32 | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 20-Jan-2025.) |
Ref | Expression |
---|---|
nadd32 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddcom 8738 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = (𝐶 +no 𝐵)) | |
2 | 1 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = (𝐶 +no 𝐵)) |
3 | 2 | oveq2d 7464 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no (𝐵 +no 𝐶)) = (𝐴 +no (𝐶 +no 𝐵))) |
4 | naddass 8752 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶))) | |
5 | naddass 8752 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐶) +no 𝐵) = (𝐴 +no (𝐶 +no 𝐵))) | |
6 | 5 | 3com23 1126 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐶) +no 𝐵) = (𝐴 +no (𝐶 +no 𝐵))) |
7 | 3, 4, 6 | 3eqtr4d 2790 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = ((𝐴 +no 𝐶) +no 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Oncon0 6395 (class class class)co 7448 +no cnadd 8721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-nadd 8722 |
This theorem is referenced by: nadd4 8754 |
Copyright terms: Public domain | W3C validator |