MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ne0gt0d Structured version   Visualization version   GIF version

Theorem ne0gt0d 10766
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ne0gt0d.2 (𝜑 → 0 ≤ 𝐴)
ne0gt0d.3 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
ne0gt0d (𝜑 → 0 < 𝐴)

Proof of Theorem ne0gt0d
StepHypRef Expression
1 ne0gt0d.3 . 2 (𝜑𝐴 ≠ 0)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ne0gt0d.2 . . 3 (𝜑 → 0 ≤ 𝐴)
4 ne0gt0 10734 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴))
52, 3, 4syl2anc 587 . 2 (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴))
61, 5mpbid 235 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2114  wne 3011   class class class wbr 5042  cr 10525  0cc0 10526   < clt 10664  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-addrcl 10587  ax-rnegex 10597  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670
This theorem is referenced by:  sqrtgt0  14609  absrpcl  14639  sqreulem  14710  fprodle  15341  efgt0  15447  abvgt0  19590  nmrpcl  23224  lebnumlem1  23564  ipcau2  23836  recxpcl  25264  mulcxp  25274  rlimcnp  25549  lgsdilem  25906  pntleml  26193  ttgcontlem1  26677  axsegconlem6  26714  axpaschlem  26732  axcontlem2  26757  axcontlem4  26759  axcontlem7  26762  xrge0iifhom  31254  cndprobprob  31770  usgrgt2cycl  32451  tan2h  35007  dvasin  35099  radcnvrat  40952  ioodvbdlimc1lem2  42513  ioodvbdlimc2lem  42515  fourierdlem30  42718  fourierdlem48  42735  fourierdlem49  42736  fourierdlem54  42741  fourierdlem102  42789  fourierdlem114  42801  sqwvfoura  42809
  Copyright terms: Public domain W3C validator