| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0gt0d | Structured version Visualization version GIF version | ||
| Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ne0gt0d.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| ne0gt0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Ref | Expression |
|---|---|
| ne0gt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0gt0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ne0gt0d.2 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 4 | ne0gt0 11221 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴)) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ℝcr 11008 0cc0 11009 < clt 11149 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 |
| This theorem is referenced by: sqrtgt0 15165 absrpcl 15195 sqreulem 15267 fprodle 15903 efgt0 16012 abvgt0 20705 nmrpcl 24506 lebnumlem1 24858 ipcau2 25132 recxpcl 26582 mulcxp 26592 rlimcnp 26873 lgsdilem 27233 pntleml 27520 ttgcontlem1 28830 axsegconlem6 28867 axpaschlem 28885 axcontlem2 28910 axcontlem4 28912 axcontlem7 28915 sgnval2 32678 xrge0iifhom 33904 cndprobprob 34406 usgrgt2cycl 35103 tan2h 37592 dvasin 37684 explt1d 42296 expeq1d 42297 radcnvrat 44287 ioodvbdlimc1lem2 45913 ioodvbdlimc2lem 45915 fourierdlem30 46118 fourierdlem48 46135 fourierdlem49 46136 fourierdlem54 46141 fourierdlem102 46189 fourierdlem114 46201 sqwvfoura 46209 |
| Copyright terms: Public domain | W3C validator |