![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ne0gt0d | Structured version Visualization version GIF version |
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ne0gt0d.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
ne0gt0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
ne0gt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0gt0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ne0gt0d.2 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | ne0gt0 11395 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴)) | |
5 | 2, 3, 4 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴)) |
6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: sqrtgt0 15307 absrpcl 15337 sqreulem 15408 fprodle 16044 efgt0 16151 abvgt0 20843 nmrpcl 24654 lebnumlem1 25012 ipcau2 25287 recxpcl 26735 mulcxp 26745 rlimcnp 27026 lgsdilem 27386 pntleml 27673 ttgcontlem1 28917 axsegconlem6 28955 axpaschlem 28973 axcontlem2 28998 axcontlem4 29000 axcontlem7 29003 xrge0iifhom 33883 cndprobprob 34403 usgrgt2cycl 35098 tan2h 37572 dvasin 37664 explt1d 42310 expeq1d 42311 radcnvrat 44283 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 fourierdlem30 46058 fourierdlem48 46075 fourierdlem49 46076 fourierdlem54 46081 fourierdlem102 46129 fourierdlem114 46141 sqwvfoura 46149 |
Copyright terms: Public domain | W3C validator |