MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ne0gt0d Structured version   Visualization version   GIF version

Theorem ne0gt0d 11311
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ne0gt0d.2 (𝜑 → 0 ≤ 𝐴)
ne0gt0d.3 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
ne0gt0d (𝜑 → 0 < 𝐴)

Proof of Theorem ne0gt0d
StepHypRef Expression
1 ne0gt0d.3 . 2 (𝜑𝐴 ≠ 0)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ne0gt0d.2 . . 3 (𝜑 → 0 ≤ 𝐴)
4 ne0gt0 11279 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴))
52, 3, 4syl2anc 584 . 2 (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴))
61, 5mpbid 232 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2925   class class class wbr 5107  cr 11067  0cc0 11068   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-addrcl 11129  ax-rnegex 11139  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  sqrtgt0  15224  absrpcl  15254  sqreulem  15326  fprodle  15962  efgt0  16071  abvgt0  20729  nmrpcl  24508  lebnumlem1  24860  ipcau2  25134  recxpcl  26584  mulcxp  26594  rlimcnp  26875  lgsdilem  27235  pntleml  27522  ttgcontlem1  28812  axsegconlem6  28849  axpaschlem  28867  axcontlem2  28892  axcontlem4  28894  axcontlem7  28897  sgnval2  32658  xrge0iifhom  33927  cndprobprob  34429  usgrgt2cycl  35117  tan2h  37606  dvasin  37698  explt1d  42311  expeq1d  42312  radcnvrat  44303  ioodvbdlimc1lem2  45930  ioodvbdlimc2lem  45932  fourierdlem30  46135  fourierdlem48  46152  fourierdlem49  46153  fourierdlem54  46158  fourierdlem102  46206  fourierdlem114  46218  sqwvfoura  46226
  Copyright terms: Public domain W3C validator