Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ne0gt0d | Structured version Visualization version GIF version |
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ne0gt0d.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
ne0gt0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
ne0gt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0gt0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ne0gt0d.2 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | ne0gt0 11173 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴)) | |
5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴)) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5089 ℝcr 10963 0cc0 10964 < clt 11102 ≤ cle 11103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-addrcl 11025 ax-rnegex 11035 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 |
This theorem is referenced by: sqrtgt0 15061 absrpcl 15091 sqreulem 15162 fprodle 15797 efgt0 15903 abvgt0 20186 nmrpcl 23874 lebnumlem1 24222 ipcau2 24496 recxpcl 25928 mulcxp 25938 rlimcnp 26213 lgsdilem 26570 pntleml 26857 ttgcontlem1 27482 axsegconlem6 27520 axpaschlem 27538 axcontlem2 27563 axcontlem4 27565 axcontlem7 27568 xrge0iifhom 32126 cndprobprob 32646 usgrgt2cycl 33332 tan2h 35867 dvasin 35959 radcnvrat 42242 ioodvbdlimc1lem2 43798 ioodvbdlimc2lem 43800 fourierdlem30 44003 fourierdlem48 44020 fourierdlem49 44021 fourierdlem54 44026 fourierdlem102 44074 fourierdlem114 44086 sqwvfoura 44094 |
Copyright terms: Public domain | W3C validator |