| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ne0gt0d | Structured version Visualization version GIF version | ||
| Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ne0gt0d.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| ne0gt0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| Ref | Expression |
|---|---|
| ne0gt0d | ⊢ (𝜑 → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0gt0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ne0gt0d.2 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 4 | ne0gt0 11255 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴)) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ℝcr 11043 0cc0 11044 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: sqrtgt0 15200 absrpcl 15230 sqreulem 15302 fprodle 15938 efgt0 16047 abvgt0 20705 nmrpcl 24484 lebnumlem1 24836 ipcau2 25110 recxpcl 26560 mulcxp 26570 rlimcnp 26851 lgsdilem 27211 pntleml 27498 ttgcontlem1 28788 axsegconlem6 28825 axpaschlem 28843 axcontlem2 28868 axcontlem4 28870 axcontlem7 28873 sgnval2 32631 xrge0iifhom 33900 cndprobprob 34402 usgrgt2cycl 35090 tan2h 37579 dvasin 37671 explt1d 42284 expeq1d 42285 radcnvrat 44276 ioodvbdlimc1lem2 45903 ioodvbdlimc2lem 45905 fourierdlem30 46108 fourierdlem48 46125 fourierdlem49 46126 fourierdlem54 46131 fourierdlem102 46179 fourierdlem114 46191 sqwvfoura 46199 |
| Copyright terms: Public domain | W3C validator |