MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ne0gt0d Structured version   Visualization version   GIF version

Theorem ne0gt0d 11250
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ne0gt0d.2 (𝜑 → 0 ≤ 𝐴)
ne0gt0d.3 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
ne0gt0d (𝜑 → 0 < 𝐴)

Proof of Theorem ne0gt0d
StepHypRef Expression
1 ne0gt0d.3 . 2 (𝜑𝐴 ≠ 0)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ne0gt0d.2 . . 3 (𝜑 → 0 ≤ 𝐴)
4 ne0gt0 11218 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴))
52, 3, 4syl2anc 584 . 2 (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴))
61, 5mpbid 232 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  wne 2928   class class class wbr 5089  cr 11005  0cc0 11006   < clt 11146  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-addrcl 11067  ax-rnegex 11077  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152
This theorem is referenced by:  sqrtgt0  15165  absrpcl  15195  sqreulem  15267  fprodle  15903  efgt0  16012  abvgt0  20735  nmrpcl  24535  lebnumlem1  24887  ipcau2  25161  recxpcl  26611  mulcxp  26621  rlimcnp  26902  lgsdilem  27262  pntleml  27549  ttgcontlem1  28863  axsegconlem6  28900  axpaschlem  28918  axcontlem2  28943  axcontlem4  28945  axcontlem7  28948  sgnval2  32718  xrge0iifhom  33950  cndprobprob  34451  usgrgt2cycl  35174  tan2h  37660  dvasin  37752  explt1d  42364  expeq1d  42365  radcnvrat  44355  ioodvbdlimc1lem2  45978  ioodvbdlimc2lem  45980  fourierdlem30  46183  fourierdlem48  46200  fourierdlem49  46201  fourierdlem54  46206  fourierdlem102  46254  fourierdlem114  46266  sqwvfoura  46274
  Copyright terms: Public domain W3C validator