Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ne0gt0d | Structured version Visualization version GIF version |
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ne0gt0d.2 | ⊢ (𝜑 → 0 ≤ 𝐴) |
ne0gt0d.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
ne0gt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0gt0d.3 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ne0gt0d.2 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | ne0gt0 11080 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴)) | |
5 | 2, 3, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴)) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ℝcr 10870 0cc0 10871 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: sqrtgt0 14970 absrpcl 15000 sqreulem 15071 fprodle 15706 efgt0 15812 abvgt0 20088 nmrpcl 23776 lebnumlem1 24124 ipcau2 24398 recxpcl 25830 mulcxp 25840 rlimcnp 26115 lgsdilem 26472 pntleml 26759 ttgcontlem1 27252 axsegconlem6 27290 axpaschlem 27308 axcontlem2 27333 axcontlem4 27335 axcontlem7 27338 xrge0iifhom 31887 cndprobprob 32405 usgrgt2cycl 33092 tan2h 35769 dvasin 35861 radcnvrat 41932 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 fourierdlem30 43678 fourierdlem48 43695 fourierdlem49 43696 fourierdlem54 43701 fourierdlem102 43749 fourierdlem114 43761 sqwvfoura 43769 |
Copyright terms: Public domain | W3C validator |