MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ne0gt0d Structured version   Visualization version   GIF version

Theorem ne0gt0d 11112
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ne0gt0d.2 (𝜑 → 0 ≤ 𝐴)
ne0gt0d.3 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
ne0gt0d (𝜑 → 0 < 𝐴)

Proof of Theorem ne0gt0d
StepHypRef Expression
1 ne0gt0d.3 . 2 (𝜑𝐴 ≠ 0)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ne0gt0d.2 . . 3 (𝜑 → 0 ≤ 𝐴)
4 ne0gt0 11080 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴))
52, 3, 4syl2anc 584 . 2 (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴))
61, 5mpbid 231 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wne 2943   class class class wbr 5074  cr 10870  0cc0 10871   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-addrcl 10932  ax-rnegex 10942  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015
This theorem is referenced by:  sqrtgt0  14970  absrpcl  15000  sqreulem  15071  fprodle  15706  efgt0  15812  abvgt0  20088  nmrpcl  23776  lebnumlem1  24124  ipcau2  24398  recxpcl  25830  mulcxp  25840  rlimcnp  26115  lgsdilem  26472  pntleml  26759  ttgcontlem1  27252  axsegconlem6  27290  axpaschlem  27308  axcontlem2  27333  axcontlem4  27335  axcontlem7  27338  xrge0iifhom  31887  cndprobprob  32405  usgrgt2cycl  33092  tan2h  35769  dvasin  35861  radcnvrat  41932  ioodvbdlimc1lem2  43473  ioodvbdlimc2lem  43475  fourierdlem30  43678  fourierdlem48  43695  fourierdlem49  43696  fourierdlem54  43701  fourierdlem102  43749  fourierdlem114  43761  sqwvfoura  43769
  Copyright terms: Public domain W3C validator