MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ne0gt0d Structured version   Visualization version   GIF version

Theorem ne0gt0d 11205
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ne0gt0d.2 (𝜑 → 0 ≤ 𝐴)
ne0gt0d.3 (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
ne0gt0d (𝜑 → 0 < 𝐴)

Proof of Theorem ne0gt0d
StepHypRef Expression
1 ne0gt0d.3 . 2 (𝜑𝐴 ≠ 0)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ne0gt0d.2 . . 3 (𝜑 → 0 ≤ 𝐴)
4 ne0gt0 11173 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴))
52, 3, 4syl2anc 584 . 2 (𝜑 → (𝐴 ≠ 0 ↔ 0 < 𝐴))
61, 5mpbid 231 1 (𝜑 → 0 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2105  wne 2940   class class class wbr 5089  cr 10963  0cc0 10964   < clt 11102  cle 11103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-resscn 11021  ax-1cn 11022  ax-addrcl 11025  ax-rnegex 11035  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-po 5526  df-so 5527  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108
This theorem is referenced by:  sqrtgt0  15061  absrpcl  15091  sqreulem  15162  fprodle  15797  efgt0  15903  abvgt0  20186  nmrpcl  23874  lebnumlem1  24222  ipcau2  24496  recxpcl  25928  mulcxp  25938  rlimcnp  26213  lgsdilem  26570  pntleml  26857  ttgcontlem1  27482  axsegconlem6  27520  axpaschlem  27538  axcontlem2  27563  axcontlem4  27565  axcontlem7  27568  xrge0iifhom  32126  cndprobprob  32646  usgrgt2cycl  33332  tan2h  35867  dvasin  35959  radcnvrat  42242  ioodvbdlimc1lem2  43798  ioodvbdlimc2lem  43800  fourierdlem30  44003  fourierdlem48  44020  fourierdlem49  44021  fourierdlem54  44026  fourierdlem102  44074  fourierdlem114  44086  sqwvfoura  44094
  Copyright terms: Public domain W3C validator