![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmgt0 | Structured version Visualization version GIF version |
Description: The norm of a nonzero element is a positive real. (Contributed by NM, 20-Nov-2007.) (Revised by AV, 8-Oct-2021.) |
Ref | Expression |
---|---|
nmgt0.x | ⊢ 𝑋 = (Base‘𝐺) |
nmgt0.n | ⊢ 𝑁 = (norm‘𝐺) |
nmgt0.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
nmgt0 | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝐴 ≠ 0 ↔ 0 < (𝑁‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmgt0.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
2 | nmgt0.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
3 | nmgt0.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | nmeq0 22830 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 0 )) |
5 | 4 | necon3bid 3013 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0 )) |
6 | 1, 2 | nmcl 22828 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
7 | 1, 2 | nmge0 22829 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → 0 ≤ (𝑁‘𝐴)) |
8 | ne0gt0 10481 | . . 3 ⊢ (((𝑁‘𝐴) ∈ ℝ ∧ 0 ≤ (𝑁‘𝐴)) → ((𝑁‘𝐴) ≠ 0 ↔ 0 < (𝑁‘𝐴))) | |
9 | 6, 7, 8 | syl2anc 579 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) ≠ 0 ↔ 0 < (𝑁‘𝐴))) |
10 | 5, 9 | bitr3d 273 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝐴 ≠ 0 ↔ 0 < (𝑁‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 class class class wbr 4886 ‘cfv 6135 ℝcr 10271 0cc0 10272 < clt 10411 ≤ cle 10412 Basecbs 16255 0gc0g 16486 normcnm 22789 NrmGrpcngp 22790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-n0 11643 df-z 11729 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-0g 16488 df-topgen 16490 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-grp 17812 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-xms 22533 df-ms 22534 df-nm 22795 df-ngp 22796 |
This theorem is referenced by: ncvs1 23364 |
Copyright terms: Public domain | W3C validator |