Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > subfacp1 | Structured version Visualization version GIF version |
Description: A two-term recurrence for the subfactorial. This theorem allows us to forget the combinatorial definition of the derangement number in favor of the recursive definition provided by this theorem and subfac0 33147, subfac1 33148. (Contributed by Mario Carneiro, 23-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
subfac.n | ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
Ref | Expression |
---|---|
subfacp1 | ⊢ (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆‘𝑁) + (𝑆‘(𝑁 − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | . 2 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
2 | subfac.n | . 2 ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) | |
3 | f1oeq1 6696 | . . . 4 ⊢ (𝑔 = 𝑓 → (𝑔:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) | |
4 | fveq2 6766 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑔‘𝑧) = (𝑔‘𝑦)) | |
5 | id 22 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | |
6 | 4, 5 | neeq12d 3005 | . . . . . 6 ⊢ (𝑧 = 𝑦 → ((𝑔‘𝑧) ≠ 𝑧 ↔ (𝑔‘𝑦) ≠ 𝑦)) |
7 | 6 | cbvralvw 3380 | . . . . 5 ⊢ (∀𝑧 ∈ (1...(𝑁 + 1))(𝑔‘𝑧) ≠ 𝑧 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑔‘𝑦) ≠ 𝑦) |
8 | fveq1 6765 | . . . . . . 7 ⊢ (𝑔 = 𝑓 → (𝑔‘𝑦) = (𝑓‘𝑦)) | |
9 | 8 | neeq1d 3003 | . . . . . 6 ⊢ (𝑔 = 𝑓 → ((𝑔‘𝑦) ≠ 𝑦 ↔ (𝑓‘𝑦) ≠ 𝑦)) |
10 | 9 | ralbidv 3121 | . . . . 5 ⊢ (𝑔 = 𝑓 → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑔‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)) |
11 | 7, 10 | syl5bb 283 | . . . 4 ⊢ (𝑔 = 𝑓 → (∀𝑧 ∈ (1...(𝑁 + 1))(𝑔‘𝑧) ≠ 𝑧 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)) |
12 | 3, 11 | anbi12d 631 | . . 3 ⊢ (𝑔 = 𝑓 → ((𝑔:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑧 ∈ (1...(𝑁 + 1))(𝑔‘𝑧) ≠ 𝑧) ↔ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦))) |
13 | 12 | cbvabv 2811 | . 2 ⊢ {𝑔 ∣ (𝑔:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑧 ∈ (1...(𝑁 + 1))(𝑔‘𝑧) ≠ 𝑧)} = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
14 | 1, 2, 13 | subfacp1lem6 33155 | 1 ⊢ (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆‘𝑁) + (𝑆‘(𝑁 − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∀wral 3064 ↦ cmpt 5156 –1-1-onto→wf1o 6425 ‘cfv 6426 (class class class)co 7267 Fincfn 8720 1c1 10882 + caddc 10884 · cmul 10886 − cmin 11215 ℕcn 11983 ℕ0cn0 12243 ...cfz 13249 ♯chash 14054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-oadd 8288 df-er 8485 df-map 8604 df-pm 8605 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-dju 9669 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-n0 12244 df-xnn0 12316 df-z 12330 df-uz 12593 df-fz 13250 df-hash 14055 |
This theorem is referenced by: subfacval2 33157 |
Copyright terms: Public domain | W3C validator |