Proof of Theorem signsvfn
Step | Hyp | Ref
| Expression |
1 | | simpl 476 |
. . . . . . 7
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → 𝐹 ∈
(Word ℝ ∖ {∅})) |
2 | 1 | eldifad 3804 |
. . . . . 6
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → 𝐹 ∈
Word ℝ) |
3 | | simpr 479 |
. . . . . . 7
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → 𝐾 ∈
ℝ) |
4 | 3 | s1cld 13699 |
. . . . . 6
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → 〈“𝐾”〉 ∈ Word
ℝ) |
5 | | ccatcl 13670 |
. . . . . 6
⊢ ((𝐹 ∈ Word ℝ ∧
〈“𝐾”〉
∈ Word ℝ) → (𝐹 ++ 〈“𝐾”〉) ∈ Word
ℝ) |
6 | 2, 4, 5 | syl2anc 579 |
. . . . 5
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → (𝐹 ++
〈“𝐾”〉) ∈ Word
ℝ) |
7 | | signsv.p |
. . . . . 6
⊢ ⨣ =
(𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦
if(𝑏 = 0, 𝑎, 𝑏)) |
8 | | signsv.w |
. . . . . 6
⊢ 𝑊 = {〈(Base‘ndx), {-1,
0, 1}〉, 〈(+g‘ndx), ⨣
〉} |
9 | | signsv.t |
. . . . . 6
⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈
(0..^(♯‘𝑓))
↦ (𝑊
Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
10 | | signsv.v |
. . . . . 6
⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈
(1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
11 | 7, 8, 9, 10 | signsvvfval 31265 |
. . . . 5
⊢ ((𝐹 ++ 〈“𝐾”〉) ∈ Word
ℝ → (𝑉‘(𝐹 ++ 〈“𝐾”〉)) = Σ𝑗 ∈ (1..^(♯‘(𝐹 ++ 〈“𝐾”〉)))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0)) |
12 | 6, 11 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → (𝑉‘(𝐹 ++ 〈“𝐾”〉)) = Σ𝑗 ∈ (1..^(♯‘(𝐹 ++ 〈“𝐾”〉)))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0)) |
13 | | ccatlen 13671 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word ℝ ∧
〈“𝐾”〉
∈ Word ℝ) → (♯‘(𝐹 ++ 〈“𝐾”〉)) = ((♯‘𝐹) +
(♯‘〈“𝐾”〉))) |
14 | 2, 4, 13 | syl2anc 579 |
. . . . . . 7
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → (♯‘(𝐹 ++ 〈“𝐾”〉)) = ((♯‘𝐹) +
(♯‘〈“𝐾”〉))) |
15 | | s1len 13702 |
. . . . . . . 8
⊢
(♯‘〈“𝐾”〉) = 1 |
16 | 15 | oveq2i 6935 |
. . . . . . 7
⊢
((♯‘𝐹) +
(♯‘〈“𝐾”〉)) = ((♯‘𝐹) + 1) |
17 | 14, 16 | syl6eq 2830 |
. . . . . 6
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → (♯‘(𝐹 ++ 〈“𝐾”〉)) = ((♯‘𝐹) + 1)) |
18 | 17 | oveq2d 6940 |
. . . . 5
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → (1..^(♯‘(𝐹 ++ 〈“𝐾”〉))) =
(1..^((♯‘𝐹) +
1))) |
19 | 18 | sumeq1d 14848 |
. . . 4
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → Σ𝑗
∈ (1..^(♯‘(𝐹 ++ 〈“𝐾”〉)))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈
(1..^((♯‘𝐹) +
1))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0)) |
20 | | eldifsn 4550 |
. . . . . . . 8
⊢ (𝐹 ∈ (Word ℝ ∖
{∅}) ↔ (𝐹 ∈
Word ℝ ∧ 𝐹 ≠
∅)) |
21 | | lennncl 13628 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) →
(♯‘𝐹) ∈
ℕ) |
22 | 20, 21 | sylbi 209 |
. . . . . . 7
⊢ (𝐹 ∈ (Word ℝ ∖
{∅}) → (♯‘𝐹) ∈ ℕ) |
23 | | nnuz 12034 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
24 | 22, 23 | syl6eleq 2869 |
. . . . . 6
⊢ (𝐹 ∈ (Word ℝ ∖
{∅}) → (♯‘𝐹) ∈
(ℤ≥‘1)) |
25 | 24 | adantr 474 |
. . . . 5
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → (♯‘𝐹) ∈
(ℤ≥‘1)) |
26 | | 1cnd 10373 |
. . . . . 6
⊢ ((((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1...(♯‘𝐹)))
∧ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1))) → 1 ∈
ℂ) |
27 | | 0cnd 10371 |
. . . . . 6
⊢ ((((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1...(♯‘𝐹)))
∧ ¬ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1))) → 0 ∈
ℂ) |
28 | 26, 27 | ifclda 4341 |
. . . . 5
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1...(♯‘𝐹)))
→ if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) ∈
ℂ) |
29 | | fveq2 6448 |
. . . . . . 7
⊢ (𝑗 = (♯‘𝐹) → ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) = ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹))) |
30 | | fvoveq1 6947 |
. . . . . . 7
⊢ (𝑗 = (♯‘𝐹) → ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)) = ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1))) |
31 | 29, 30 | neeq12d 3030 |
. . . . . 6
⊢ (𝑗 = (♯‘𝐹) → (((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)) ↔ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)))) |
32 | 31 | ifbid 4329 |
. . . . 5
⊢ (𝑗 = (♯‘𝐹) → if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) = if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)), 1,
0)) |
33 | 25, 28, 32 | fzosump1 14897 |
. . . 4
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → Σ𝑗
∈ (1..^((♯‘𝐹) + 1))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) = (Σ𝑗 ∈
(1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)), 1,
0))) |
34 | 12, 19, 33 | 3eqtrd 2818 |
. . 3
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → (𝑉‘(𝐹 ++ 〈“𝐾”〉)) = (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)), 1,
0))) |
35 | 34 | adantlr 705 |
. 2
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ 〈“𝐾”〉)) = (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)), 1,
0))) |
36 | 2 | adantr 474 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ 𝐹 ∈ Word
ℝ) |
37 | 3 | adantr 474 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ 𝐾 ∈
ℝ) |
38 | | fzo0ss1 12822 |
. . . . . . . . . . 11
⊢
(1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)) |
39 | 38 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))) |
40 | 39 | sselda 3821 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ 𝑗 ∈
(0..^(♯‘𝐹))) |
41 | 7, 8, 9, 10 | signstfvp 31257 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑗 ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) = ((𝑇‘𝐹)‘𝑗)) |
42 | 36, 37, 40, 41 | syl3anc 1439 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) = ((𝑇‘𝐹)‘𝑗)) |
43 | | elfzoel2 12793 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(1..^(♯‘𝐹))
→ (♯‘𝐹)
∈ ℤ) |
44 | 43 | adantl 475 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ (♯‘𝐹)
∈ ℤ) |
45 | | 1nn0 11665 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℕ0 |
46 | | eluzmn 12004 |
. . . . . . . . . . . 12
⊢
(((♯‘𝐹)
∈ ℤ ∧ 1 ∈ ℕ0) → (♯‘𝐹) ∈
(ℤ≥‘((♯‘𝐹) − 1))) |
47 | 44, 45, 46 | sylancl 580 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ (♯‘𝐹)
∈ (ℤ≥‘((♯‘𝐹) − 1))) |
48 | | fzoss2 12820 |
. . . . . . . . . . 11
⊢
((♯‘𝐹)
∈ (ℤ≥‘((♯‘𝐹) − 1)) →
(0..^((♯‘𝐹)
− 1)) ⊆ (0..^(♯‘𝐹))) |
49 | 47, 48 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ (0..^((♯‘𝐹) − 1)) ⊆
(0..^(♯‘𝐹))) |
50 | | simpr 479 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ 𝑗 ∈
(1..^(♯‘𝐹))) |
51 | | elfzoelz 12794 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(1..^(♯‘𝐹))
→ 𝑗 ∈
ℤ) |
52 | 51 | adantl 475 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ 𝑗 ∈
ℤ) |
53 | | elfzom1b 12891 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℤ ∧
(♯‘𝐹) ∈
ℤ) → (𝑗 ∈
(1..^(♯‘𝐹))
↔ (𝑗 − 1) ∈
(0..^((♯‘𝐹)
− 1)))) |
54 | 52, 44, 53 | syl2anc 579 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ (𝑗 ∈
(1..^(♯‘𝐹))
↔ (𝑗 − 1) ∈
(0..^((♯‘𝐹)
− 1)))) |
55 | 50, 54 | mpbid 224 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ (𝑗 − 1) ∈
(0..^((♯‘𝐹)
− 1))) |
56 | 49, 55 | sseldd 3822 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ (𝑗 − 1) ∈
(0..^(♯‘𝐹))) |
57 | 7, 8, 9, 10 | signstfvp 31257 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑗 − 1) ∈
(0..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)) = ((𝑇‘𝐹)‘(𝑗 − 1))) |
58 | 36, 37, 56, 57 | syl3anc 1439 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)) = ((𝑇‘𝐹)‘(𝑗 − 1))) |
59 | 42, 58 | neeq12d 3030 |
. . . . . . 7
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ (((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)) ↔ ((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)))) |
60 | 59 | ifbid 4329 |
. . . . . 6
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) ∧ 𝑗 ∈
(1..^(♯‘𝐹)))
→ if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) = if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) |
61 | 60 | sumeq2dv 14850 |
. . . . 5
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → Σ𝑗
∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈
(1..^(♯‘𝐹))if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) |
62 | 7, 8, 9, 10 | signsvvfval 31265 |
. . . . . 6
⊢ (𝐹 ∈ Word ℝ →
(𝑉‘𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) |
63 | 2, 62 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → (𝑉‘𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘𝐹)‘𝑗) ≠ ((𝑇‘𝐹)‘(𝑗 − 1)), 1, 0)) |
64 | 61, 63 | eqtr4d 2817 |
. . . 4
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → Σ𝑗
∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) = (𝑉‘𝐹)) |
65 | 64 | adantlr 705 |
. . 3
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈
(1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) = (𝑉‘𝐹)) |
66 | 7, 8, 9, 10 | signstfvn 31254 |
. . . . . . 7
⊢ ((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ 𝐾 ∈
ℝ) → ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) = (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ⨣ (sgn‘𝐾))) |
67 | 66 | adantlr 705 |
. . . . . 6
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) = (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ⨣ (sgn‘𝐾))) |
68 | 2 | adantlr 705 |
. . . . . . 7
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ Word ℝ) |
69 | | simpr 479 |
. . . . . . 7
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ) |
70 | 22 | ad2antrr 716 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈
ℕ) |
71 | | fzo0end 12884 |
. . . . . . . 8
⊢
((♯‘𝐹)
∈ ℕ → ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))) |
72 | 70, 71 | syl 17 |
. . . . . . 7
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) →
((♯‘𝐹) −
1) ∈ (0..^(♯‘𝐹))) |
73 | 7, 8, 9, 10 | signstfvp 31257 |
. . . . . . 7
⊢ ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧
((♯‘𝐹) −
1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)) = ((𝑇‘𝐹)‘((♯‘𝐹) − 1))) |
74 | 68, 69, 72, 73 | syl3anc 1439 |
. . . . . 6
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)) = ((𝑇‘𝐹)‘((♯‘𝐹) − 1))) |
75 | 67, 74 | neeq12d 3030 |
. . . . 5
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)) ↔ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ⨣ (sgn‘𝐾)) ≠ ((𝑇‘𝐹)‘((♯‘𝐹) − 1)))) |
76 | 7, 8, 9, 10 | signstfvcl 31259 |
. . . . . . 7
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧
((♯‘𝐹) −
1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1,
1}) |
77 | 72, 76 | syldan 585 |
. . . . . 6
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1,
1}) |
78 | 69 | rexrd 10428 |
. . . . . . 7
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈
ℝ*) |
79 | | sgncl 31207 |
. . . . . . 7
⊢ (𝐾 ∈ ℝ*
→ (sgn‘𝐾) ∈
{-1, 0, 1}) |
80 | 78, 79 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ {-1, 0,
1}) |
81 | 7, 8 | signswch 31246 |
. . . . . 6
⊢ ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1} ∧
(sgn‘𝐾) ∈ {-1,
0, 1}) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ⨣ (sgn‘𝐾)) ≠ ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ↔ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0)) |
82 | 77, 80, 81 | syl2anc 579 |
. . . . 5
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ⨣ (sgn‘𝐾)) ≠ ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ↔ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0)) |
83 | | sgnsgn 31217 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℝ*
→ (sgn‘(sgn‘𝐾)) = (sgn‘𝐾)) |
84 | 78, 83 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) →
(sgn‘(sgn‘𝐾)) =
(sgn‘𝐾)) |
85 | 84 | oveq2d 6940 |
. . . . . . 7
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((sgn‘((𝑇‘𝐹)‘((♯‘𝐹) − 1))) ·
(sgn‘(sgn‘𝐾)))
= ((sgn‘((𝑇‘𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾))) |
86 | 85 | breq1d 4898 |
. . . . . 6
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((sgn‘((𝑇‘𝐹)‘((♯‘𝐹) − 1))) ·
(sgn‘(sgn‘𝐾)))
< 0 ↔ ((sgn‘((𝑇‘𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)) < 0)) |
87 | | neg1rr 11502 |
. . . . . . . . 9
⊢ -1 ∈
ℝ |
88 | | 1re 10378 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
89 | | prssi 4585 |
. . . . . . . . 9
⊢ ((-1
∈ ℝ ∧ 1 ∈ ℝ) → {-1, 1} ⊆
ℝ) |
90 | 87, 88, 89 | mp2an 682 |
. . . . . . . 8
⊢ {-1, 1}
⊆ ℝ |
91 | 90, 77 | sseldi 3819 |
. . . . . . 7
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈
ℝ) |
92 | | sgnclre 31208 |
. . . . . . . 8
⊢ (𝐾 ∈ ℝ →
(sgn‘𝐾) ∈
ℝ) |
93 | 92 | adantl 475 |
. . . . . . 7
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈
ℝ) |
94 | | sgnmulsgn 31218 |
. . . . . . 7
⊢ ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ ℝ ∧
(sgn‘𝐾) ∈
ℝ) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔
((sgn‘((𝑇‘𝐹)‘((♯‘𝐹) − 1))) ·
(sgn‘(sgn‘𝐾)))
< 0)) |
95 | 91, 93, 94 | syl2anc 579 |
. . . . . 6
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔
((sgn‘((𝑇‘𝐹)‘((♯‘𝐹) − 1))) ·
(sgn‘(sgn‘𝐾)))
< 0)) |
96 | | sgnmulsgn 31218 |
. . . . . . 7
⊢ ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) ∈ ℝ ∧ 𝐾 ∈ ℝ) →
((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0 ↔
((sgn‘((𝑇‘𝐹)‘((♯‘𝐹) − 1))) ·
(sgn‘𝐾)) <
0)) |
97 | 91, 69, 96 | syl2anc 579 |
. . . . . 6
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0 ↔ ((sgn‘((𝑇‘𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)) < 0)) |
98 | 86, 95, 97 | 3bitr4d 303 |
. . . . 5
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0)) |
99 | 75, 82, 98 | 3bitrd 297 |
. . . 4
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)) ↔ (((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0)) |
100 | 99 | ifbid 4329 |
. . 3
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)), 1, 0) =
if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1,
0)) |
101 | 65, 100 | oveq12d 6942 |
. 2
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (Σ𝑗 ∈
(1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘𝑗) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ 〈“𝐾”〉))‘((♯‘𝐹) − 1)), 1, 0)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0))) |
102 | 35, 101 | eqtrd 2814 |
1
⊢ (((𝐹 ∈ (Word ℝ ∖
{∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ 〈“𝐾”〉)) = ((𝑉‘𝐹) + if((((𝑇‘𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0))) |