Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfn Structured version   Visualization version   GIF version

Theorem signsvfn 32570
Description: Number of changes in a word compared to a shorter word. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signsvfn (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝐾,𝑖,𝑛   𝑓,𝑊,𝑖,𝑛   𝑖,𝑎,𝑗,𝑛,𝐹,𝑏   𝐾,𝑎,𝑏,𝑗,𝑓   𝑇,𝑎   𝑓,𝑏,𝑇,𝑗,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfn
StepHypRef Expression
1 eldifi 4062 . . . . . 6 (𝐹 ∈ (Word ℝ ∖ {∅}) → 𝐹 ∈ Word ℝ)
2 s1cl 14316 . . . . . 6 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
3 ccatcl 14286 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
41, 2, 3syl2an 596 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
5 signsv.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
6 signsv.w . . . . . 6 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
7 signsv.t . . . . . 6 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
8 signsv.v . . . . . 6 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
95, 6, 7, 8signsvvfval 32566 . . . . 5 ((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = Σ𝑗 ∈ (1..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0))
104, 9syl 17 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = Σ𝑗 ∈ (1..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0))
11 ccatlen 14287 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
121, 2, 11syl2an 596 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
13 s1len 14320 . . . . . . . 8 (♯‘⟨“𝐾”⟩) = 1
1413oveq2i 7295 . . . . . . 7 ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)) = ((♯‘𝐹) + 1)
1512, 14eqtrdi 2795 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + 1))
1615oveq2d 7300 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (1..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))) = (1..^((♯‘𝐹) + 1)))
1716sumeq1d 15422 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ (1..^((♯‘𝐹) + 1))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0))
18 eldifsn 4721 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
19 lennncl 14246 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ)
2018, 19sylbi 216 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ∈ ℕ)
21 nnuz 12630 . . . . . . 7 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2850 . . . . . 6 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ∈ (ℤ‘1))
2322adantr 481 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ (ℤ‘1))
24 1cnd 10979 . . . . . 6 ((((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1...(♯‘𝐹))) ∧ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1))) → 1 ∈ ℂ)
25 0cnd 10977 . . . . . 6 ((((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1...(♯‘𝐹))) ∧ ¬ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1))) → 0 ∈ ℂ)
2624, 25ifclda 4495 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1...(♯‘𝐹))) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) ∈ ℂ)
27 fveq2 6783 . . . . . . 7 (𝑗 = (♯‘𝐹) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) = ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)))
28 fvoveq1 7307 . . . . . . 7 (𝑗 = (♯‘𝐹) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) = ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)))
2927, 28neeq12d 3006 . . . . . 6 (𝑗 = (♯‘𝐹) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) ↔ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1))))
3029ifbid 4483 . . . . 5 (𝑗 = (♯‘𝐹) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0))
3123, 26, 30fzosump1 15473 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^((♯‘𝐹) + 1))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0)))
3210, 17, 313eqtrd 2783 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0)))
3332adantlr 712 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0)))
34 simpl 483 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ (Word ℝ ∖ {∅}))
3534eldifad 3900 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ Word ℝ)
3635adantr 481 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → 𝐹 ∈ Word ℝ)
37 simplr 766 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → 𝐾 ∈ ℝ)
38 fzo0ss1 13426 . . . . . . . . . . 11 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
3938a1i 11 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)))
4039sselda 3922 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → 𝑗 ∈ (0..^(♯‘𝐹)))
415, 6, 7, 8signstfvp 32559 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) = ((𝑇𝐹)‘𝑗))
4236, 37, 40, 41syl3anc 1370 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) = ((𝑇𝐹)‘𝑗))
43 elfzoel2 13395 . . . . . . . . . . . . 13 (𝑗 ∈ (1..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
4443adantl 482 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℤ)
45 1nn0 12258 . . . . . . . . . . . 12 1 ∈ ℕ0
46 eluzmn 12598 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℤ ∧ 1 ∈ ℕ0) → (♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)))
4744, 45, 46sylancl 586 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)))
48 fzoss2 13424 . . . . . . . . . . 11 ((♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
4947, 48syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
50 elfzo1elm1fzo0 13497 . . . . . . . . . . 11 (𝑗 ∈ (1..^(♯‘𝐹)) → (𝑗 − 1) ∈ (0..^((♯‘𝐹) − 1)))
5150adantl 482 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (𝑗 − 1) ∈ (0..^((♯‘𝐹) − 1)))
5249, 51sseldd 3923 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (𝑗 − 1) ∈ (0..^(♯‘𝐹)))
535, 6, 7, 8signstfvp 32559 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑗 − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) = ((𝑇𝐹)‘(𝑗 − 1)))
5436, 37, 52, 53syl3anc 1370 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) = ((𝑇𝐹)‘(𝑗 − 1)))
5542, 54neeq12d 3006 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) ↔ ((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1))))
5655ifbid 4483 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
5756sumeq2dv 15424 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
585, 6, 7, 8signsvvfval 32566 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑉𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
5935, 58syl 17 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑉𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
6057, 59eqtr4d 2782 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = (𝑉𝐹))
6160adantlr 712 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = (𝑉𝐹))
625, 6, 7, 8signstfvn 32557 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)))
6362adantlr 712 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)))
6435adantlr 712 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ Word ℝ)
65 simpr 485 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ)
66 fzo0end 13488 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
6720, 66syl 17 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
6867ad2antrr 723 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
695, 6, 7, 8signstfvp 32559 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)) = ((𝑇𝐹)‘((♯‘𝐹) − 1)))
7064, 65, 68, 69syl3anc 1370 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)) = ((𝑇𝐹)‘((♯‘𝐹) − 1)))
7163, 70neeq12d 3006 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)) ≠ ((𝑇𝐹)‘((♯‘𝐹) − 1))))
725, 6, 7, 8signstfvcl 32561 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1})
7368, 72syldan 591 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1})
74 rexr 11030 . . . . . . . 8 (𝐾 ∈ ℝ → 𝐾 ∈ ℝ*)
75 sgncl 32514 . . . . . . . 8 (𝐾 ∈ ℝ* → (sgn‘𝐾) ∈ {-1, 0, 1})
7674, 75syl 17 . . . . . . 7 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ {-1, 0, 1})
7776adantl 482 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ {-1, 0, 1})
785, 6signswch 32549 . . . . . 6 ((((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1} ∧ (sgn‘𝐾) ∈ {-1, 0, 1}) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)) ≠ ((𝑇𝐹)‘((♯‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0))
7973, 77, 78syl2anc 584 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)) ≠ ((𝑇𝐹)‘((♯‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0))
8065rexrd 11034 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ*)
81 sgnsgn 32524 . . . . . . . . 9 (𝐾 ∈ ℝ* → (sgn‘(sgn‘𝐾)) = (sgn‘𝐾))
8280, 81syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘(sgn‘𝐾)) = (sgn‘𝐾))
8382oveq2d 7300 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) = ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)))
8483breq1d 5085 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)) < 0))
85 neg1rr 12097 . . . . . . . . 9 -1 ∈ ℝ
86 1re 10984 . . . . . . . . 9 1 ∈ ℝ
87 prssi 4755 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 1} ⊆ ℝ)
8885, 86, 87mp2an 689 . . . . . . . 8 {-1, 1} ⊆ ℝ
8988, 73sselid 3920 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ ℝ)
90 sgnclre 32515 . . . . . . . 8 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ ℝ)
9190adantl 482 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ ℝ)
92 sgnmulsgn 32525 . . . . . . 7 ((((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ ℝ ∧ (sgn‘𝐾) ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) < 0))
9389, 91, 92syl2anc 584 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) < 0))
94 sgnmulsgn 32525 . . . . . . 7 ((((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)) < 0))
9589, 94sylancom 588 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)) < 0))
9684, 93, 953bitr4d 311 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0))
9771, 79, 963bitrd 305 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0))
9897ifbid 4483 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0) = if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0))
9961, 98oveq12d 7302 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0)))
10033, 99eqtrd 2779 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wne 2944  cdif 3885  wss 3888  c0 4257  ifcif 4460  {csn 4562  {cpr 4564  {ctp 4566  cop 4568   class class class wbr 5075  cmpt 5158  cfv 6437  (class class class)co 7284  cmpo 7286  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  *cxr 11017   < clt 11018  cmin 11214  -cneg 11215  cn 11982  0cn0 12242  cz 12328  cuz 12591  ...cfz 13248  ..^cfzo 13391  chash 14053  Word cword 14226   ++ cconcat 14282  ⟨“cs1 14309  sgncsgn 14806  Σcsu 15406  ndxcnx 16903  Basecbs 16921  +gcplusg 16971   Σg cgsu 17160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-sup 9210  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-n0 12243  df-xnn0 12315  df-z 12329  df-uz 12592  df-rp 12740  df-fz 13249  df-fzo 13392  df-seq 13731  df-exp 13792  df-hash 14054  df-word 14227  df-lsw 14275  df-concat 14283  df-s1 14310  df-substr 14363  df-pfx 14393  df-sgn 14807  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-sum 15407  df-struct 16857  df-slot 16892  df-ndx 16904  df-base 16922  df-plusg 16984  df-0g 17161  df-gsum 17162  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-mulg 18710  df-cntz 18932
This theorem is referenced by:  signsvtp  32571  signsvtn  32572  signlem0  32575
  Copyright terms: Public domain W3C validator