Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfn Structured version   Visualization version   GIF version

Theorem signsvfn 34619
Description: Number of changes in a word compared to a shorter word. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signsvfn (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝐾,𝑖,𝑛   𝑓,𝑊,𝑖,𝑛   𝑖,𝑎,𝑗,𝑛,𝐹,𝑏   𝐾,𝑎,𝑏,𝑗,𝑓   𝑇,𝑎   𝑓,𝑏,𝑇,𝑗,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfn
StepHypRef Expression
1 eldifi 4111 . . . . . 6 (𝐹 ∈ (Word ℝ ∖ {∅}) → 𝐹 ∈ Word ℝ)
2 s1cl 14625 . . . . . 6 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
3 ccatcl 14597 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
41, 2, 3syl2an 596 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
5 signsv.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
6 signsv.w . . . . . 6 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
7 signsv.t . . . . . 6 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
8 signsv.v . . . . . 6 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
95, 6, 7, 8signsvvfval 34615 . . . . 5 ((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = Σ𝑗 ∈ (1..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0))
104, 9syl 17 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = Σ𝑗 ∈ (1..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0))
11 ccatlen 14598 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
121, 2, 11syl2an 596 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
13 s1len 14629 . . . . . . . 8 (♯‘⟨“𝐾”⟩) = 1
1413oveq2i 7421 . . . . . . 7 ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)) = ((♯‘𝐹) + 1)
1512, 14eqtrdi 2787 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + 1))
1615oveq2d 7426 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (1..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))) = (1..^((♯‘𝐹) + 1)))
1716sumeq1d 15721 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ (1..^((♯‘𝐹) + 1))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0))
18 eldifsn 4767 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
19 lennncl 14557 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℕ)
2018, 19sylbi 217 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ∈ ℕ)
21 nnuz 12900 . . . . . . 7 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2845 . . . . . 6 (𝐹 ∈ (Word ℝ ∖ {∅}) → (♯‘𝐹) ∈ (ℤ‘1))
2322adantr 480 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (♯‘𝐹) ∈ (ℤ‘1))
24 1cnd 11235 . . . . . 6 ((((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1...(♯‘𝐹))) ∧ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1))) → 1 ∈ ℂ)
25 0cnd 11233 . . . . . 6 ((((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1...(♯‘𝐹))) ∧ ¬ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1))) → 0 ∈ ℂ)
2624, 25ifclda 4541 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1...(♯‘𝐹))) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) ∈ ℂ)
27 fveq2 6881 . . . . . . 7 (𝑗 = (♯‘𝐹) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) = ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)))
28 fvoveq1 7433 . . . . . . 7 (𝑗 = (♯‘𝐹) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) = ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)))
2927, 28neeq12d 2994 . . . . . 6 (𝑗 = (♯‘𝐹) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) ↔ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1))))
3029ifbid 4529 . . . . 5 (𝑗 = (♯‘𝐹) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0))
3123, 26, 30fzosump1 15773 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^((♯‘𝐹) + 1))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0)))
3210, 17, 313eqtrd 2775 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0)))
3332adantlr 715 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0)))
34 simpl 482 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ (Word ℝ ∖ {∅}))
3534eldifad 3943 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ Word ℝ)
3635adantr 480 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → 𝐹 ∈ Word ℝ)
37 simplr 768 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → 𝐾 ∈ ℝ)
38 fzo0ss1 13711 . . . . . . . . . . 11 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
3938a1i 11 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)))
4039sselda 3963 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → 𝑗 ∈ (0..^(♯‘𝐹)))
415, 6, 7, 8signstfvp 34608 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) = ((𝑇𝐹)‘𝑗))
4236, 37, 40, 41syl3anc 1373 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) = ((𝑇𝐹)‘𝑗))
43 elfzoel2 13680 . . . . . . . . . . . . 13 (𝑗 ∈ (1..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
4443adantl 481 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℤ)
45 1nn0 12522 . . . . . . . . . . . 12 1 ∈ ℕ0
46 eluzmn 12864 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℤ ∧ 1 ∈ ℕ0) → (♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)))
4744, 45, 46sylancl 586 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)))
48 fzoss2 13709 . . . . . . . . . . 11 ((♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
4947, 48syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
50 elfzo1elm1fzo0 13789 . . . . . . . . . . 11 (𝑗 ∈ (1..^(♯‘𝐹)) → (𝑗 − 1) ∈ (0..^((♯‘𝐹) − 1)))
5150adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (𝑗 − 1) ∈ (0..^((♯‘𝐹) − 1)))
5249, 51sseldd 3964 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (𝑗 − 1) ∈ (0..^(♯‘𝐹)))
535, 6, 7, 8signstfvp 34608 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑗 − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) = ((𝑇𝐹)‘(𝑗 − 1)))
5436, 37, 52, 53syl3anc 1373 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) = ((𝑇𝐹)‘(𝑗 − 1)))
5542, 54neeq12d 2994 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)) ↔ ((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1))))
5655ifbid 4529 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑗 ∈ (1..^(♯‘𝐹))) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
5756sumeq2dv 15723 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
585, 6, 7, 8signsvvfval 34615 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑉𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
5935, 58syl 17 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑉𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
6057, 59eqtr4d 2774 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = (𝑉𝐹))
6160adantlr 715 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) = (𝑉𝐹))
625, 6, 7, 8signstfvn 34606 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)))
6362adantlr 715 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) = (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)))
6435adantlr 715 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ Word ℝ)
65 simpr 484 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ)
66 fzo0end 13779 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
6720, 66syl 17 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
6867ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
695, 6, 7, 8signstfvp 34608 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)) = ((𝑇𝐹)‘((♯‘𝐹) − 1)))
7064, 65, 68, 69syl3anc 1373 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)) = ((𝑇𝐹)‘((♯‘𝐹) − 1)))
7163, 70neeq12d 2994 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)) ≠ ((𝑇𝐹)‘((♯‘𝐹) − 1))))
725, 6, 7, 8signstfvcl 34610 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1})
7368, 72syldan 591 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1})
74 rexr 11286 . . . . . . . 8 (𝐾 ∈ ℝ → 𝐾 ∈ ℝ*)
75 sgncl 32815 . . . . . . . 8 (𝐾 ∈ ℝ* → (sgn‘𝐾) ∈ {-1, 0, 1})
7674, 75syl 17 . . . . . . 7 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ {-1, 0, 1})
7776adantl 481 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ {-1, 0, 1})
785, 6signswch 34598 . . . . . 6 ((((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ {-1, 1} ∧ (sgn‘𝐾) ∈ {-1, 0, 1}) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)) ≠ ((𝑇𝐹)‘((♯‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0))
7973, 77, 78syl2anc 584 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) (sgn‘𝐾)) ≠ ((𝑇𝐹)‘((♯‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0))
8065rexrd 11290 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ*)
81 sgnsgn 32825 . . . . . . . . 9 (𝐾 ∈ ℝ* → (sgn‘(sgn‘𝐾)) = (sgn‘𝐾))
8280, 81syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘(sgn‘𝐾)) = (sgn‘𝐾))
8382oveq2d 7426 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) = ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)))
8483breq1d 5134 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)) < 0))
85 neg1rr 12360 . . . . . . . . 9 -1 ∈ ℝ
86 1re 11240 . . . . . . . . 9 1 ∈ ℝ
87 prssi 4802 . . . . . . . . 9 ((-1 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 1} ⊆ ℝ)
8885, 86, 87mp2an 692 . . . . . . . 8 {-1, 1} ⊆ ℝ
8988, 73sselid 3961 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ ℝ)
90 sgnclre 32816 . . . . . . . 8 (𝐾 ∈ ℝ → (sgn‘𝐾) ∈ ℝ)
9190adantl 481 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ ℝ)
92 sgnmulsgn 32826 . . . . . . 7 ((((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ ℝ ∧ (sgn‘𝐾) ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) < 0))
9389, 91, 92syl2anc 584 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘(sgn‘𝐾))) < 0))
94 sgnmulsgn 32826 . . . . . . 7 ((((𝑇𝐹)‘((♯‘𝐹) − 1)) ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)) < 0))
9589, 94sylancom 588 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0 ↔ ((sgn‘((𝑇𝐹)‘((♯‘𝐹) − 1))) · (sgn‘𝐾)) < 0))
9684, 93, 953bitr4d 311 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → ((((𝑇𝐹)‘((♯‘𝐹) − 1)) · (sgn‘𝐾)) < 0 ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0))
9771, 79, 963bitrd 305 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)) ↔ (((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0))
9897ifbid 4529 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0) = if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0))
9961, 98oveq12d 7428 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑗) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(𝑗 − 1)), 1, 0) + if(((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(♯‘𝐹)) ≠ ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘((♯‘𝐹) − 1)), 1, 0)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0)))
10033, 99eqtrd 2771 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝐾 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“𝐾”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((♯‘𝐹) − 1)) · 𝐾) < 0, 1, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  cdif 3928  wss 3931  c0 4313  ifcif 4505  {csn 4606  {cpr 4608  {ctp 4610  cop 4612   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cmpo 7412  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  *cxr 11273   < clt 11274  cmin 11471  -cneg 11472  cn 12245  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  ..^cfzo 13676  chash 14353  Word cword 14536   ++ cconcat 14593  ⟨“cs1 14618  sgncsgn 15110  Σcsu 15707  ndxcnx 17217  Basecbs 17233  +gcplusg 17276   Σg cgsu 17459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-sgn 15111  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mulg 19056  df-cntz 19305
This theorem is referenced by:  signsvtp  34620  signsvtn  34621  signlem0  34624
  Copyright terms: Public domain W3C validator