Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvvfval Structured version   Visualization version   GIF version

Theorem signsvvfval 34591
Description: The value of 𝑉, which represents the number of times the sign changes in a word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signsvvfval (𝐹 ∈ Word ℝ → (𝑉𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑗,𝐹   𝑇,𝑓
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvvfval
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
21oveq2d 7362 . . 3 (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹)))
3 fveq2 6822 . . . . . . 7 (𝑓 = 𝐹 → (𝑇𝑓) = (𝑇𝐹))
43fveq1d 6824 . . . . . 6 (𝑓 = 𝐹 → ((𝑇𝑓)‘𝑗) = ((𝑇𝐹)‘𝑗))
53fveq1d 6824 . . . . . 6 (𝑓 = 𝐹 → ((𝑇𝑓)‘(𝑗 − 1)) = ((𝑇𝐹)‘(𝑗 − 1)))
64, 5neeq12d 2989 . . . . 5 (𝑓 = 𝐹 → (((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)) ↔ ((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1))))
76ifbid 4496 . . . 4 (𝑓 = 𝐹 → if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0) = if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
87adantr 480 . . 3 ((𝑓 = 𝐹𝑗 ∈ (1..^(♯‘𝑓))) → if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0) = if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
92, 8sumeq12dv 15613 . 2 (𝑓 = 𝐹 → Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
10 signsv.v . 2 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
11 sumex 15595 . 2 Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0) ∈ V
129, 10, 11fvmpt 6929 1 (𝐹 ∈ Word ℝ → (𝑉𝐹) = Σ𝑗 ∈ (1..^(♯‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  ifcif 4472  {cpr 4575  {ctp 4577  cop 4579  cmpt 5170  cfv 6481  (class class class)co 7346  cmpo 7348  cr 11005  0cc0 11006  1c1 11007  cmin 11344  -cneg 11345  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420  sgncsgn 14993  Σcsu 15593  ndxcnx 17104  Basecbs 17120  +gcplusg 17161   Σg cgsu 17344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-sum 15594
This theorem is referenced by:  signsvf0  34593  signsvf1  34594  signsvfn  34595
  Copyright terms: Public domain W3C validator