Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem22 Structured version   Visualization version   GIF version

Theorem fourierdlem22 46110
Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem22.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem22.c 𝐶 = (-π(,)π)
fourierdlem22.fibl (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem22.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem22.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
Assertion
Ref Expression
fourierdlem22 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝑥,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝐶(𝑛)   𝐹(𝑛)

Proof of Theorem fourierdlem22
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem22.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
21adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
3 ioossre 13310 . . . . . . . . . . . 12 (-π(,)π) ⊆ ℝ
4 id 22 . . . . . . . . . . . . 13 (𝑥𝐶𝑥𝐶)
5 fourierdlem22.c . . . . . . . . . . . . 13 𝐶 = (-π(,)π)
64, 5eleqtrdi 2838 . . . . . . . . . . . 12 (𝑥𝐶𝑥 ∈ (-π(,)π))
73, 6sselid 3933 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ ℝ)
87adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
92, 8ffvelcdmd 7019 . . . . . . . . 9 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
109adantlr 715 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
11 nn0re 12393 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
1211adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
137adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
1412, 13remulcld 11145 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
1514recoscld 16053 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1615adantll 714 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1710, 16remulcld 11145 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
18 ioombl 25464 . . . . . . . . . . . 12 (-π(,)π) ∈ dom vol
195, 18eqeltri 2824 . . . . . . . . . . 11 𝐶 ∈ dom vol
2019a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ dom vol)
21 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
22 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
2320, 16, 10, 21, 22offval2 7633 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
2416recnd 11143 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
2510recnd 11143 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
2624, 25mulcomd 11136 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
2726mpteq2dva 5185 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
2823, 27eqtr2d 2765 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
29 coscn 26353 . . . . . . . . . . . . 13 cos ∈ (ℂ–cn→ℂ)
3029a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → cos ∈ (ℂ–cn→ℂ))
315, 3eqsstri 3982 . . . . . . . . . . . . . . . 16 𝐶 ⊆ ℝ
32 ax-resscn 11066 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
3331, 32sstri 3945 . . . . . . . . . . . . . . 15 𝐶 ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝐶 ⊆ ℂ)
3511recnd 11143 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
36 ssid 3958 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
3736a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ℂ ⊆ ℂ)
3834, 35, 37constcncfg 45853 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
39 cncfmptid 24804 . . . . . . . . . . . . . . 15 ((𝐶 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4033, 36, 39mp2an 692 . . . . . . . . . . . . . 14 (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ)
4140a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4238, 41mulcncf 25344 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4330, 42cncfmpt1f 24805 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
44 cnmbf 25558 . . . . . . . . . . 11 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4519, 43, 44sylancr 587 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4645adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
471feqmptd 6891 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4847reseq1d 5929 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
49 resmpt 5988 . . . . . . . . . . . . 13 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5031, 49mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5148, 50eqtr2d 2765 . . . . . . . . . . 11 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
52 fourierdlem22.fibl . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
5351, 52eqeltrd 2828 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
5453adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
55 1re 11115 . . . . . . . . . . 11 1 ∈ ℝ
56 simpr 484 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
57 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑥 𝑛 ∈ ℕ0
58 nfmpt1 5191 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
5958nfdm 5893 . . . . . . . . . . . . . . . . . 18 𝑥dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6059nfcri 2883 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6157, 60nfan 1899 . . . . . . . . . . . . . . . 16 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
6215ex 412 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6362adantr 480 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6461, 63ralrimi 3227 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
65 dmmptg 6191 . . . . . . . . . . . . . . 15 (∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6664, 65syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6756, 66eleqtrd 2830 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦𝐶)
68 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
69 oveq2 7357 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
7069fveq2d 6826 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
7170adantl 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
72 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
7311adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
7431, 72sselid 3933 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
7573, 74remulcld 11145 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
7675recoscld 16053 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ)
7768, 71, 72, 76fvmptd 6937 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦)))
7877fveq2d 6826 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦))))
79 abscosbd 45261 . . . . . . . . . . . . . . 15 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8075, 79syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8178, 80eqbrtrd 5114 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8267, 81syldan 591 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8382ralrimiva 3121 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
84 breq2 5096 . . . . . . . . . . . . 13 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8584ralbidv 3152 . . . . . . . . . . . 12 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8685rspcev 3577 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8755, 83, 86sylancr 587 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8887adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
89 bddmulibl 25738 . . . . . . . . 9 (((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9046, 54, 88, 89syl3anc 1373 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9128, 90eqeltrd 2828 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
9217, 91itgrecl 25697 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
93 pire 26364 . . . . . . 7 π ∈ ℝ
9493a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → π ∈ ℝ)
95 0re 11117 . . . . . . . 8 0 ∈ ℝ
96 pipos 26366 . . . . . . . 8 0 < π
9795, 96gtneii 11228 . . . . . . 7 π ≠ 0
9897a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → π ≠ 0)
9992, 94, 98redivcld 11952 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
100 fourierdlem22.a . . . . 5 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
10199, 100fmptd 7048 . . . 4 (𝜑𝐴:ℕ0⟶ℝ)
102101ffvelcdmda 7018 . . 3 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
103102ex 412 . 2 (𝜑 → (𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ))
104 nnnn0 12391 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
10514resincld 16052 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
106105adantll 714 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
10710, 106remulcld 11145 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
108 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
10920, 106, 10, 108, 22offval2 7633 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
110106recnd 11143 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
111110, 25mulcomd 11136 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
112111mpteq2dva 5185 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
113109, 112eqtr2d 2765 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
114 sincn 26352 . . . . . . . . . . . . 13 sin ∈ (ℂ–cn→ℂ)
115114a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → sin ∈ (ℂ–cn→ℂ))
11642adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
117115, 116cncfmpt1f 24805 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
118 cnmbf 25558 . . . . . . . . . . 11 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
11919, 117, 118sylancr 587 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
120 simpr 484 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
121 nfmpt1 5191 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
122121nfdm 5893 . . . . . . . . . . . . . . . . . . 19 𝑥dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
123122nfcri 2883 . . . . . . . . . . . . . . . . . 18 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
12457, 123nfan 1899 . . . . . . . . . . . . . . . . 17 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
125105ex 412 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
126125adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
127124, 126ralrimi 3227 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
128 dmmptg 6191 . . . . . . . . . . . . . . . 16 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
129127, 128syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
130120, 129eleqtrd 2830 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
131 eqidd 2730 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
13269fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
133132adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
13475resincld 16052 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
135131, 133, 72, 134fvmptd 6937 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
136135fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
137 abssinbd 45277 . . . . . . . . . . . . . . . 16 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
13875, 137syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
139136, 138eqbrtrd 5114 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
140130, 139syldan 591 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
141140ralrimiva 3121 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
142 breq2 5096 . . . . . . . . . . . . . 14 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
143142ralbidv 3152 . . . . . . . . . . . . 13 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
144143rspcev 3577 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
14555, 141, 144sylancr 587 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
146145adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
147 bddmulibl 25738 . . . . . . . . . 10 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
148119, 54, 146, 147syl3anc 1373 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
149113, 148eqeltrd 2828 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
150107, 149itgrecl 25697 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
151104, 150sylan2 593 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
15293a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
15397a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
154151, 152, 153redivcld 11952 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
155 fourierdlem22.b . . . . 5 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
156154, 155fmptd 7048 . . . 4 (𝜑𝐵:ℕ⟶ℝ)
157156ffvelcdmda 7018 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
158157ex 412 . 2 (𝜑 → (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ))
159103, 158jca 511 1 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3903   class class class wbr 5092  cmpt 5173  dom cdm 5619  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  cle 11150  -cneg 11348   / cdiv 11777  cn 12128  0cn0 12384  (,)cioo 13248  abscabs 15141  sincsin 15970  cosccos 15971  πcpi 15973  cnccncf 24767  volcvol 25362  MblFncmbf 25513  𝐿1cibl 25516  citg 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-limc 25765  df-dv 25766
This theorem is referenced by:  fourierdlem83  46170
  Copyright terms: Public domain W3C validator