Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem22 Structured version   Visualization version   GIF version

Theorem fourierdlem22 42710
Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem22.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem22.c 𝐶 = (-π(,)π)
fourierdlem22.fibl (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem22.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem22.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
Assertion
Ref Expression
fourierdlem22 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝑥,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝐶(𝑛)   𝐹(𝑛)

Proof of Theorem fourierdlem22
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem22.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
21adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
3 ioossre 12786 . . . . . . . . . . . 12 (-π(,)π) ⊆ ℝ
4 id 22 . . . . . . . . . . . . 13 (𝑥𝐶𝑥𝐶)
5 fourierdlem22.c . . . . . . . . . . . . 13 𝐶 = (-π(,)π)
64, 5eleqtrdi 2924 . . . . . . . . . . . 12 (𝑥𝐶𝑥 ∈ (-π(,)π))
73, 6sseldi 3940 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ ℝ)
87adantl 485 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
92, 8ffvelrnd 6834 . . . . . . . . 9 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
109adantlr 714 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
11 nn0re 11894 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
1211adantr 484 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
137adantl 485 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
1412, 13remulcld 10660 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
1514recoscld 15488 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1615adantll 713 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1710, 16remulcld 10660 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
18 ioombl 24167 . . . . . . . . . . . 12 (-π(,)π) ∈ dom vol
195, 18eqeltri 2910 . . . . . . . . . . 11 𝐶 ∈ dom vol
2019a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ dom vol)
21 eqidd 2823 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
22 eqidd 2823 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
2320, 16, 10, 21, 22offval2 7411 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
2416recnd 10658 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
2510recnd 10658 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
2624, 25mulcomd 10651 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
2726mpteq2dva 5137 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
2823, 27eqtr2d 2858 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
29 coscn 25038 . . . . . . . . . . . . 13 cos ∈ (ℂ–cn→ℂ)
3029a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → cos ∈ (ℂ–cn→ℂ))
315, 3eqsstri 3976 . . . . . . . . . . . . . . . 16 𝐶 ⊆ ℝ
32 ax-resscn 10583 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
3331, 32sstri 3951 . . . . . . . . . . . . . . 15 𝐶 ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝐶 ⊆ ℂ)
3511recnd 10658 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
36 ssid 3964 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
3736a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ℂ ⊆ ℂ)
3834, 35, 37constcncfg 42453 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
39 cncfmptid 23516 . . . . . . . . . . . . . . 15 ((𝐶 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4033, 36, 39mp2an 691 . . . . . . . . . . . . . 14 (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ)
4140a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4238, 41mulcncf 24048 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4330, 42cncfmpt1f 23517 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
44 cnmbf 24261 . . . . . . . . . . 11 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4519, 43, 44sylancr 590 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4645adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
471feqmptd 6715 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4847reseq1d 5830 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
49 resmpt 5883 . . . . . . . . . . . . 13 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5031, 49mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5148, 50eqtr2d 2858 . . . . . . . . . . 11 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
52 fourierdlem22.fibl . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
5351, 52eqeltrd 2914 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
5453adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
55 1re 10630 . . . . . . . . . . 11 1 ∈ ℝ
56 simpr 488 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
57 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑥 𝑛 ∈ ℕ0
58 nfmpt1 5140 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
5958nfdm 5800 . . . . . . . . . . . . . . . . . 18 𝑥dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6059nfcri 2967 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6157, 60nfan 1900 . . . . . . . . . . . . . . . 16 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
6215ex 416 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6362adantr 484 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6461, 63ralrimi 3205 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
65 dmmptg 6074 . . . . . . . . . . . . . . 15 (∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6664, 65syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6756, 66eleqtrd 2916 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦𝐶)
68 eqidd 2823 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
69 oveq2 7148 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
7069fveq2d 6656 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
7170adantl 485 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
72 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
7311adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
7431, 72sseldi 3940 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
7573, 74remulcld 10660 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
7675recoscld 15488 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ)
7768, 71, 72, 76fvmptd 6757 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦)))
7877fveq2d 6656 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦))))
79 abscosbd 41848 . . . . . . . . . . . . . . 15 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8075, 79syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8178, 80eqbrtrd 5064 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8267, 81syldan 594 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8382ralrimiva 3174 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
84 breq2 5046 . . . . . . . . . . . . 13 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8584ralbidv 3187 . . . . . . . . . . . 12 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8685rspcev 3598 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8755, 83, 86sylancr 590 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8887adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
89 bddmulibl 24440 . . . . . . . . 9 (((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9046, 54, 88, 89syl3anc 1368 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9128, 90eqeltrd 2914 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
9217, 91itgrecl 24399 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
93 pire 25049 . . . . . . 7 π ∈ ℝ
9493a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → π ∈ ℝ)
95 0re 10632 . . . . . . . 8 0 ∈ ℝ
96 pipos 25051 . . . . . . . 8 0 < π
9795, 96gtneii 10741 . . . . . . 7 π ≠ 0
9897a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → π ≠ 0)
9992, 94, 98redivcld 11457 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
100 fourierdlem22.a . . . . 5 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
10199, 100fmptd 6860 . . . 4 (𝜑𝐴:ℕ0⟶ℝ)
102101ffvelrnda 6833 . . 3 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
103102ex 416 . 2 (𝜑 → (𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ))
104 nnnn0 11892 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
10514resincld 15487 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
106105adantll 713 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
10710, 106remulcld 10660 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
108 eqidd 2823 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
10920, 106, 10, 108, 22offval2 7411 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
110106recnd 10658 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
111110, 25mulcomd 10651 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
112111mpteq2dva 5137 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
113109, 112eqtr2d 2858 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
114 sincn 25037 . . . . . . . . . . . . 13 sin ∈ (ℂ–cn→ℂ)
115114a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → sin ∈ (ℂ–cn→ℂ))
11642adantl 485 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
117115, 116cncfmpt1f 23517 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
118 cnmbf 24261 . . . . . . . . . . 11 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
11919, 117, 118sylancr 590 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
120 simpr 488 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
121 nfmpt1 5140 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
122121nfdm 5800 . . . . . . . . . . . . . . . . . . 19 𝑥dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
123122nfcri 2967 . . . . . . . . . . . . . . . . . 18 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
12457, 123nfan 1900 . . . . . . . . . . . . . . . . 17 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
125105ex 416 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
126125adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
127124, 126ralrimi 3205 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
128 dmmptg 6074 . . . . . . . . . . . . . . . 16 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
129127, 128syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
130120, 129eleqtrd 2916 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
131 eqidd 2823 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
13269fveq2d 6656 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
133132adantl 485 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
13475resincld 15487 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
135131, 133, 72, 134fvmptd 6757 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
136135fveq2d 6656 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
137 abssinbd 41866 . . . . . . . . . . . . . . . 16 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
13875, 137syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
139136, 138eqbrtrd 5064 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
140130, 139syldan 594 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
141140ralrimiva 3174 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
142 breq2 5046 . . . . . . . . . . . . . 14 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
143142ralbidv 3187 . . . . . . . . . . . . 13 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
144143rspcev 3598 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
14555, 141, 144sylancr 590 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
146145adantl 485 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
147 bddmulibl 24440 . . . . . . . . . 10 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
148119, 54, 146, 147syl3anc 1368 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
149113, 148eqeltrd 2914 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
150107, 149itgrecl 24399 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
151104, 150sylan2 595 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
15293a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
15397a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
154151, 152, 153redivcld 11457 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
155 fourierdlem22.b . . . . 5 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
156154, 155fmptd 6860 . . . 4 (𝜑𝐵:ℕ⟶ℝ)
157156ffvelrnda 6833 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
158157ex 416 . 2 (𝜑 → (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ))
159103, 158jca 515 1 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  wne 3011  wral 3130  wrex 3131  wss 3908   class class class wbr 5042  cmpt 5122  dom cdm 5532  cres 5534  wf 6330  cfv 6334  (class class class)co 7140  f cof 7392  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  cle 10665  -cneg 10860   / cdiv 11286  cn 11625  0cn0 11885  (,)cioo 12726  abscabs 14584  sincsin 15408  cosccos 15409  πcpi 15411  cnccncf 23479  volcvol 24065  MblFncmbf 24216  𝐿1cibl 24219  citg 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412  df-sin 15414  df-cos 15415  df-pi 15417  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-cmp 21990  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-ovol 24066  df-vol 24067  df-mbf 24221  df-itg1 24222  df-itg2 24223  df-ibl 24224  df-itg 24225  df-0p 24272  df-limc 24467  df-dv 24468
This theorem is referenced by:  fourierdlem83  42770
  Copyright terms: Public domain W3C validator