Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem22 Structured version   Visualization version   GIF version

Theorem fourierdlem22 45784
Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem22.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem22.c 𝐶 = (-π(,)π)
fourierdlem22.fibl (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem22.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem22.b 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
Assertion
Ref Expression
fourierdlem22 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝑥,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑥,𝑛)   𝐵(𝑥,𝑛)   𝐶(𝑛)   𝐹(𝑛)

Proof of Theorem fourierdlem22
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem22.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
21adantr 479 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
3 ioossre 13431 . . . . . . . . . . . 12 (-π(,)π) ⊆ ℝ
4 id 22 . . . . . . . . . . . . 13 (𝑥𝐶𝑥𝐶)
5 fourierdlem22.c . . . . . . . . . . . . 13 𝐶 = (-π(,)π)
64, 5eleqtrdi 2836 . . . . . . . . . . . 12 (𝑥𝐶𝑥 ∈ (-π(,)π))
73, 6sselid 3977 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ ℝ)
87adantl 480 . . . . . . . . . 10 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
92, 8ffvelcdmd 7089 . . . . . . . . 9 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
109adantlr 713 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
11 nn0re 12525 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
1211adantr 479 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
137adantl 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
1412, 13remulcld 11283 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
1514recoscld 16139 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1615adantll 712 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1710, 16remulcld 11283 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
18 ioombl 25580 . . . . . . . . . . . 12 (-π(,)π) ∈ dom vol
195, 18eqeltri 2822 . . . . . . . . . . 11 𝐶 ∈ dom vol
2019a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ dom vol)
21 eqidd 2727 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
22 eqidd 2727 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
2320, 16, 10, 21, 22offval2 7700 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
2416recnd 11281 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
2510recnd 11281 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
2624, 25mulcomd 11274 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
2726mpteq2dva 5244 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
2823, 27eqtr2d 2767 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
29 coscn 26470 . . . . . . . . . . . . 13 cos ∈ (ℂ–cn→ℂ)
3029a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → cos ∈ (ℂ–cn→ℂ))
315, 3eqsstri 4014 . . . . . . . . . . . . . . . 16 𝐶 ⊆ ℝ
32 ax-resscn 11204 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
3331, 32sstri 3989 . . . . . . . . . . . . . . 15 𝐶 ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝐶 ⊆ ℂ)
3511recnd 11281 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
36 ssid 4002 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
3736a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ℂ ⊆ ℂ)
3834, 35, 37constcncfg 45527 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
39 cncfmptid 24919 . . . . . . . . . . . . . . 15 ((𝐶 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4033, 36, 39mp2an 690 . . . . . . . . . . . . . 14 (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ)
4140a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4238, 41mulcncf 25460 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4330, 42cncfmpt1f 24920 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
44 cnmbf 25674 . . . . . . . . . . 11 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4519, 43, 44sylancr 585 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4645adantl 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
471feqmptd 6961 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4847reseq1d 5979 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
49 resmpt 6037 . . . . . . . . . . . . 13 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5031, 49mp1i 13 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5148, 50eqtr2d 2767 . . . . . . . . . . 11 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
52 fourierdlem22.fibl . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
5351, 52eqeltrd 2826 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
5453adantr 479 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
55 1re 11253 . . . . . . . . . . 11 1 ∈ ℝ
56 simpr 483 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
57 nfv 1910 . . . . . . . . . . . . . . . . 17 𝑥 𝑛 ∈ ℕ0
58 nfmpt1 5252 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
5958nfdm 5948 . . . . . . . . . . . . . . . . . 18 𝑥dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6059nfcri 2883 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6157, 60nfan 1895 . . . . . . . . . . . . . . . 16 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
6215ex 411 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6362adantr 479 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6461, 63ralrimi 3245 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
65 dmmptg 6244 . . . . . . . . . . . . . . 15 (∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6664, 65syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6756, 66eleqtrd 2828 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦𝐶)
68 eqidd 2727 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
69 oveq2 7422 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
7069fveq2d 6895 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
7170adantl 480 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
72 simpr 483 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
7311adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
7431, 72sselid 3977 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
7573, 74remulcld 11283 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
7675recoscld 16139 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ)
7768, 71, 72, 76fvmptd 7006 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦)))
7877fveq2d 6895 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦))))
79 abscosbd 44927 . . . . . . . . . . . . . . 15 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8075, 79syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8178, 80eqbrtrd 5166 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8267, 81syldan 589 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8382ralrimiva 3136 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
84 breq2 5148 . . . . . . . . . . . . 13 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8584ralbidv 3168 . . . . . . . . . . . 12 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8685rspcev 3608 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8755, 83, 86sylancr 585 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8887adantl 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
89 bddmulibl 25854 . . . . . . . . 9 (((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9046, 54, 88, 89syl3anc 1368 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9128, 90eqeltrd 2826 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
9217, 91itgrecl 25813 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
93 pire 26481 . . . . . . 7 π ∈ ℝ
9493a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → π ∈ ℝ)
95 0re 11255 . . . . . . . 8 0 ∈ ℝ
96 pipos 26483 . . . . . . . 8 0 < π
9795, 96gtneii 11365 . . . . . . 7 π ≠ 0
9897a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → π ≠ 0)
9992, 94, 98redivcld 12085 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
100 fourierdlem22.a . . . . 5 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
10199, 100fmptd 7118 . . . 4 (𝜑𝐴:ℕ0⟶ℝ)
102101ffvelcdmda 7088 . . 3 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℝ)
103102ex 411 . 2 (𝜑 → (𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ))
104 nnnn0 12523 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
10514resincld 16138 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
106105adantll 712 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ)
10710, 106remulcld 11283 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ)
108 eqidd 2727 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
10920, 106, 10, 108, 22offval2 7700 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))))
110106recnd 11281 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ)
111110, 25mulcomd 11274 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (sin‘(𝑛 · 𝑥))))
112111mpteq2dva 5244 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))))
113109, 112eqtr2d 2767 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
114 sincn 26469 . . . . . . . . . . . . 13 sin ∈ (ℂ–cn→ℂ)
115114a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → sin ∈ (ℂ–cn→ℂ))
11642adantl 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
117115, 116cncfmpt1f 24920 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
118 cnmbf 25674 . . . . . . . . . . 11 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
11919, 117, 118sylancr 585 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn)
120 simpr 483 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
121 nfmpt1 5252 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
122121nfdm 5948 . . . . . . . . . . . . . . . . . . 19 𝑥dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
123122nfcri 2883 . . . . . . . . . . . . . . . . . 18 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))
12457, 123nfan 1895 . . . . . . . . . . . . . . . . 17 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
125105ex 411 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
126125adantr 479 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ))
127124, 126ralrimi 3245 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ)
128 dmmptg 6244 . . . . . . . . . . . . . . . 16 (∀𝑥𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
129127, 128syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶)
130120, 129eleqtrd 2828 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦𝐶)
131 eqidd 2727 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))))
13269fveq2d 6895 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
133132adantl 480 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦)))
13475resincld 16138 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ)
135131, 133, 72, 134fvmptd 7006 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦)))
136135fveq2d 6895 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦))))
137 abssinbd 44944 . . . . . . . . . . . . . . . 16 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
13875, 137syl 17 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(sin‘(𝑛 · 𝑦))) ≤ 1)
139136, 138eqbrtrd 5166 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
140130, 139syldan 589 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
141140ralrimiva 3136 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
142 breq2 5148 . . . . . . . . . . . . . 14 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
143142ralbidv 3168 . . . . . . . . . . . . 13 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
144143rspcev 3608 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
14555, 141, 144sylancr 585 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
146145adantl 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
147 bddmulibl 25854 . . . . . . . . . 10 (((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
148119, 54, 146, 147syl3anc 1368 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
149113, 148eqeltrd 2826 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (sin‘(𝑛 · 𝑥)))) ∈ 𝐿1)
150107, 149itgrecl 25813 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
151104, 150sylan2 591 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
15293a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
15397a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
154151, 152, 153redivcld 12085 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
155 fourierdlem22.b . . . . 5 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))
156154, 155fmptd 7118 . . . 4 (𝜑𝐵:ℕ⟶ℝ)
157156ffvelcdmda 7088 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
158157ex 411 . 2 (𝜑 → (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ))
159103, 158jca 510 1 (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵𝑛) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  wss 3947   class class class wbr 5144  cmpt 5227  dom cdm 5673  cres 5675  wf 6540  cfv 6544  (class class class)co 7414  f cof 7678  cc 11145  cr 11146  0cc0 11147  1c1 11148   · cmul 11152  cle 11288  -cneg 11484   / cdiv 11910  cn 12256  0cn0 12516  (,)cioo 13370  abscabs 15232  sincsin 16058  cosccos 16059  πcpi 16061  cnccncf 24882  volcvol 25478  MblFncmbf 25629  𝐿1cibl 25632  citg 25633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-inf2 9675  ax-cc 10467  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225  ax-addf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-iin 4997  df-disj 5112  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-ofr 7681  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-oadd 8490  df-omul 8491  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9397  df-fi 9445  df-sup 9476  df-inf 9477  df-oi 9544  df-dju 9935  df-card 9973  df-acn 9976  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-4 12321  df-5 12322  df-6 12323  df-7 12324  df-8 12325  df-9 12326  df-n0 12517  df-z 12603  df-dec 12722  df-uz 12867  df-q 12977  df-rp 13021  df-xneg 13138  df-xadd 13139  df-xmul 13140  df-ioo 13374  df-ioc 13375  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13674  df-fl 13804  df-mod 13882  df-seq 14014  df-exp 14074  df-fac 14284  df-bc 14313  df-hash 14341  df-shft 15065  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-limsup 15466  df-clim 15483  df-rlim 15484  df-sum 15684  df-ef 16062  df-sin 16064  df-cos 16065  df-pi 16067  df-struct 17142  df-sets 17159  df-slot 17177  df-ndx 17189  df-base 17207  df-ress 17236  df-plusg 17272  df-mulr 17273  df-starv 17274  df-sca 17275  df-vsca 17276  df-ip 17277  df-tset 17278  df-ple 17279  df-ds 17281  df-unif 17282  df-hom 17283  df-cco 17284  df-rest 17430  df-topn 17431  df-0g 17449  df-gsum 17450  df-topgen 17451  df-pt 17452  df-prds 17455  df-xrs 17510  df-qtop 17515  df-imas 17516  df-xps 17518  df-mre 17592  df-mrc 17593  df-acs 17595  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19774  df-psmet 21329  df-xmet 21330  df-met 21331  df-bl 21332  df-mopn 21333  df-fbas 21334  df-fg 21335  df-cnfld 21338  df-top 22882  df-topon 22899  df-topsp 22921  df-bases 22935  df-cld 23009  df-ntr 23010  df-cls 23011  df-nei 23088  df-lp 23126  df-perf 23127  df-cn 23217  df-cnp 23218  df-haus 23305  df-cmp 23377  df-tx 23552  df-hmeo 23745  df-fil 23836  df-fm 23928  df-flim 23929  df-flf 23930  df-xms 24312  df-ms 24313  df-tms 24314  df-cncf 24884  df-ovol 25479  df-vol 25480  df-mbf 25634  df-itg1 25635  df-itg2 25636  df-ibl 25637  df-itg 25638  df-0p 25685  df-limc 25881  df-dv 25882
This theorem is referenced by:  fourierdlem83  45844
  Copyright terms: Public domain W3C validator