Step | Hyp | Ref
| Expression |
1 | | fourierdlem22.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
2 | 1 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐹:ℝ⟶ℝ) |
3 | | ioossre 13149 |
. . . . . . . . . . . 12
⊢
(-π(,)π) ⊆ ℝ |
4 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐶) |
5 | | fourierdlem22.c |
. . . . . . . . . . . . 13
⊢ 𝐶 =
(-π(,)π) |
6 | 4, 5 | eleqtrdi 2850 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ (-π(,)π)) |
7 | 3, 6 | sselid 3920 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ ℝ) |
8 | 7 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℝ) |
9 | 2, 8 | ffvelrnd 6971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐹‘𝑥) ∈ ℝ) |
10 | 9 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (𝐹‘𝑥) ∈ ℝ) |
11 | | nn0re 12251 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
12 | 11 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐶) → 𝑛 ∈ ℝ) |
13 | 7 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℝ) |
14 | 12, 13 | remulcld 11014 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐶) → (𝑛 · 𝑥) ∈ ℝ) |
15 | 14 | recoscld 15862 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ) |
16 | 15 | adantll 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ) |
17 | 10, 16 | remulcld 11014 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ) |
18 | | ioombl 24738 |
. . . . . . . . . . . 12
⊢
(-π(,)π) ∈ dom vol |
19 | 5, 18 | eqeltri 2836 |
. . . . . . . . . . 11
⊢ 𝐶 ∈ dom vol |
20 | 19 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ dom
vol) |
21 | | eqidd 2740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) |
22 | | eqidd 2740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
23 | 20, 16, 10, 21, 22 | offval2 7562 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) = (𝑥 ∈ 𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹‘𝑥)))) |
24 | 16 | recnd 11012 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ) |
25 | 10 | recnd 11012 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (𝐹‘𝑥) ∈ ℂ) |
26 | 24, 25 | mulcomd 11005 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹‘𝑥)) = ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥)))) |
27 | 26 | mpteq2dva 5175 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹‘𝑥))) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))))) |
28 | 23, 27 | eqtr2d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)))) |
29 | | coscn 25613 |
. . . . . . . . . . . . 13
⊢ cos
∈ (ℂ–cn→ℂ) |
30 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ cos ∈ (ℂ–cn→ℂ)) |
31 | 5, 3 | eqsstri 3956 |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 ⊆
ℝ |
32 | | ax-resscn 10937 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
⊆ ℂ |
33 | 31, 32 | sstri 3931 |
. . . . . . . . . . . . . . 15
⊢ 𝐶 ⊆
ℂ |
34 | 33 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ 𝐶 ⊆
ℂ) |
35 | 11 | recnd 11012 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℂ) |
36 | | ssid 3944 |
. . . . . . . . . . . . . . 15
⊢ ℂ
⊆ ℂ |
37 | 36 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ ℂ ⊆ ℂ) |
38 | 34, 35, 37 | constcncfg 43420 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ 𝑛) ∈ (𝐶–cn→ℂ)) |
39 | | cncfmptid 24085 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑥
∈ 𝐶 ↦ 𝑥) ∈ (𝐶–cn→ℂ)) |
40 | 33, 36, 39 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐶 ↦ 𝑥) ∈ (𝐶–cn→ℂ) |
41 | 40 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ 𝑥) ∈ (𝐶–cn→ℂ)) |
42 | 38, 41 | mulcncf 24619 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶–cn→ℂ)) |
43 | 30, 42 | cncfmpt1f 24086 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶–cn→ℂ)) |
44 | | cnmbf 24832 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ dom vol ∧ (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶–cn→ℂ)) → (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn) |
45 | 19, 43, 44 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn) |
46 | 45 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn) |
47 | 1 | feqmptd 6846 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
48 | 47 | reseq1d 5893 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ 𝐶)) |
49 | | resmpt 5948 |
. . . . . . . . . . . . 13
⊢ (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
50 | 31, 49 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
51 | 48, 50 | eqtr2d 2780 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝐹 ↾ 𝐶)) |
52 | | fourierdlem22.fibl |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈
𝐿1) |
53 | 51, 52 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈
𝐿1) |
54 | 53 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈
𝐿1) |
55 | | 1re 10984 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
56 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) |
57 | | nfv 1918 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥 𝑛 ∈
ℕ0 |
58 | | nfmpt1 5183 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥(𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) |
59 | 58 | nfdm 5863 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥dom
(𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) |
60 | 59 | nfcri 2895 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) |
61 | 57, 60 | nfan 1903 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) |
62 | 15 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ)) |
63 | 62 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (𝑥 ∈ 𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ)) |
64 | 61, 63 | ralrimi 3142 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥 ∈ 𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ) |
65 | | dmmptg 6150 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶) |
67 | 56, 66 | eleqtrd 2842 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ 𝐶) |
68 | | eqidd 2740 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) |
69 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦)) |
70 | 69 | fveq2d 6787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦))) |
71 | 70 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦))) |
72 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ 𝐶) |
73 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → 𝑛 ∈ ℝ) |
74 | 31, 72 | sselid 3920 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ ℝ) |
75 | 73, 74 | remulcld 11014 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (𝑛 · 𝑦) ∈ ℝ) |
76 | 75 | recoscld 15862 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ) |
77 | 68, 71, 72, 76 | fvmptd 6891 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦))) |
78 | 77 | fveq2d 6787 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦)))) |
79 | | abscosbd 42824 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 · 𝑦) ∈ ℝ →
(abs‘(cos‘(𝑛
· 𝑦))) ≤
1) |
80 | 75, 79 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) →
(abs‘(cos‘(𝑛
· 𝑦))) ≤
1) |
81 | 78, 80 | eqbrtrd 5097 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) |
82 | 67, 81 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) |
83 | 82 | ralrimiva 3104 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ ∀𝑦 ∈ dom
(𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) |
84 | | breq2 5079 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 1 → ((abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)) |
85 | 84 | ralbidv 3113 |
. . . . . . . . . . . 12
⊢ (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)) |
86 | 85 | rspcev 3562 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) |
87 | 55, 83, 86 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ∃𝑏 ∈
ℝ ∀𝑦 ∈
dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) |
88 | 87 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∃𝑏 ∈ ℝ
∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) |
89 | | bddmulibl 25012 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ 𝐿1 ∧
∃𝑏 ∈ ℝ
∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) ∈
𝐿1) |
90 | 46, 54, 88, 89 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) ∈
𝐿1) |
91 | 28, 90 | eqeltrd 2840 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥)))) ∈
𝐿1) |
92 | 17, 91 | itgrecl 24971 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) |
93 | | pire 25624 |
. . . . . . 7
⊢ π
∈ ℝ |
94 | 93 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → π
∈ ℝ) |
95 | | 0re 10986 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
96 | | pipos 25626 |
. . . . . . . 8
⊢ 0 <
π |
97 | 95, 96 | gtneii 11096 |
. . . . . . 7
⊢ π ≠
0 |
98 | 97 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → π ≠
0) |
99 | 92, 94, 98 | redivcld 11812 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) |
100 | | fourierdlem22.a |
. . . . 5
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦
(∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
101 | 99, 100 | fmptd 6997 |
. . . 4
⊢ (𝜑 → 𝐴:ℕ0⟶ℝ) |
102 | 101 | ffvelrnda 6970 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℝ) |
103 | 102 | ex 413 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ0 → (𝐴‘𝑛) ∈ ℝ)) |
104 | | nnnn0 12249 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
105 | 14 | resincld 15861 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ) |
106 | 105 | adantll 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℝ) |
107 | 10, 106 | remulcld 11014 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → ((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) ∈ ℝ) |
108 | | eqidd 2740 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) |
109 | 20, 106, 10, 108, 22 | offval2 7562 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) = (𝑥 ∈ 𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹‘𝑥)))) |
110 | 106 | recnd 11012 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (sin‘(𝑛 · 𝑥)) ∈ ℂ) |
111 | 110, 25 | mulcomd 11005 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → ((sin‘(𝑛 · 𝑥)) · (𝐹‘𝑥)) = ((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥)))) |
112 | 111 | mpteq2dva 5175 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ ((sin‘(𝑛 · 𝑥)) · (𝐹‘𝑥))) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))))) |
113 | 109, 112 | eqtr2d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥)))) = ((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)))) |
114 | | sincn 25612 |
. . . . . . . . . . . . 13
⊢ sin
∈ (ℂ–cn→ℂ) |
115 | 114 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → sin
∈ (ℂ–cn→ℂ)) |
116 | 42 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶–cn→ℂ)) |
117 | 115, 116 | cncfmpt1f 24086 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶–cn→ℂ)) |
118 | | cnmbf 24832 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ dom vol ∧ (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ (𝐶–cn→ℂ)) → (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn) |
119 | 19, 117, 118 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn) |
120 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) |
121 | | nfmpt1 5183 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥(𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) |
122 | 121 | nfdm 5863 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥dom
(𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) |
123 | 122 | nfcri 2895 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) |
124 | 57, 123 | nfan 1903 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) |
125 | 105 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ)) |
126 | 125 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (𝑥 ∈ 𝐶 → (sin‘(𝑛 · 𝑥)) ∈ ℝ)) |
127 | 124, 126 | ralrimi 3142 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → ∀𝑥 ∈ 𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ) |
128 | | dmmptg 6150 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝐶 (sin‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) = 𝐶) |
130 | 120, 129 | eleqtrd 2842 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → 𝑦 ∈ 𝐶) |
131 | | eqidd 2740 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) = (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) |
132 | 69 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦))) |
133 | 132 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) ∧ 𝑥 = 𝑦) → (sin‘(𝑛 · 𝑥)) = (sin‘(𝑛 · 𝑦))) |
134 | 75 | resincld 15861 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (sin‘(𝑛 · 𝑦)) ∈ ℝ) |
135 | 131, 133,
72, 134 | fvmptd 6891 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → ((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦) = (sin‘(𝑛 · 𝑦))) |
136 | 135 | fveq2d 6787 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(sin‘(𝑛 · 𝑦)))) |
137 | | abssinbd 42841 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 · 𝑦) ∈ ℝ →
(abs‘(sin‘(𝑛
· 𝑦))) ≤
1) |
138 | 75, 137 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) →
(abs‘(sin‘(𝑛
· 𝑦))) ≤
1) |
139 | 136, 138 | eqbrtrd 5097 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) |
140 | 130, 139 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))) → (abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) |
141 | 140 | ralrimiva 3104 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ ∀𝑦 ∈ dom
(𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) |
142 | | breq2 5079 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 1 → ((abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)) |
143 | 142 | ralbidv 3113 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)) |
144 | 143 | rspcev 3562 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) |
145 | 55, 141, 144 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ ∃𝑏 ∈
ℝ ∀𝑦 ∈
dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) |
146 | 145 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∃𝑏 ∈ ℝ
∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) |
147 | | bddmulibl 25012 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ 𝐿1 ∧
∃𝑏 ∈ ℝ
∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) ∈
𝐿1) |
148 | 119, 54, 146, 147 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑥 ∈ 𝐶 ↦ (sin‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) ∈
𝐿1) |
149 | 113, 148 | eqeltrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥)))) ∈
𝐿1) |
150 | 107, 149 | itgrecl 24971 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) |
151 | 104, 150 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) |
152 | 93 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π ∈
ℝ) |
153 | 97 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → π ≠
0) |
154 | 151, 152,
153 | redivcld 11812 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) |
155 | | fourierdlem22.b |
. . . . 5
⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) |
156 | 154, 155 | fmptd 6997 |
. . . 4
⊢ (𝜑 → 𝐵:ℕ⟶ℝ) |
157 | 156 | ffvelrnda 6970 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵‘𝑛) ∈ ℝ) |
158 | 157 | ex 413 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ → (𝐵‘𝑛) ∈ ℝ)) |
159 | 103, 158 | jca 512 |
1
⊢ (𝜑 → ((𝑛 ∈ ℕ0 → (𝐴‘𝑛) ∈ ℝ) ∧ (𝑛 ∈ ℕ → (𝐵‘𝑛) ∈ ℝ))) |