MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isummulc2 Structured version   Visualization version   GIF version

Theorem isummulc2 15810
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumcl.1 𝑍 = (ℤ𝑀)
isumcl.2 (𝜑𝑀 ∈ ℤ)
isumcl.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumcl.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumcl.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
summulc.6 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
isummulc2 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍   𝑘,𝑀
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isummulc2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isumcl.1 . . 3 𝑍 = (ℤ𝑀)
2 isumcl.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 eqidd 2741 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
4 summulc.6 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
54adantr 480 . . . . . 6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
6 isumcl.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
75, 6mulcld 11310 . . . . 5 ((𝜑𝑘𝑍) → (𝐵 · 𝐴) ∈ ℂ)
87fmpttd 7149 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ)
98ffvelcdmda 7118 . . 3 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ)
10 isumcl.3 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
11 isumcl.5 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
121, 2, 10, 6, 11isumclim2 15806 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
1310, 6eqeltrd 2844 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1413ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
15 fveq2 6920 . . . . . . 7 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1615eleq1d 2829 . . . . . 6 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
1716rspccva 3634 . . . . 5 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ 𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
1814, 17sylan 579 . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ ℂ)
19 simpr 484 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘𝑍)
20 ovex 7481 . . . . . . . 8 (𝐵 · 𝐴) ∈ V
21 eqid 2740 . . . . . . . . 9 (𝑘𝑍 ↦ (𝐵 · 𝐴)) = (𝑘𝑍 ↦ (𝐵 · 𝐴))
2221fvmpt2 7040 . . . . . . . 8 ((𝑘𝑍 ∧ (𝐵 · 𝐴) ∈ V) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2319, 20, 22sylancl 585 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴))
2410oveq2d 7464 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐵 · (𝐹𝑘)) = (𝐵 · 𝐴))
2523, 24eqtr4d 2783 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
2625ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)))
27 nffvmpt1 6931 . . . . . . 7 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚)
2827nfeq1 2924 . . . . . 6 𝑘((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))
29 fveq2 6920 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚))
3015oveq2d 7464 . . . . . . 7 (𝑘 = 𝑚 → (𝐵 · (𝐹𝑘)) = (𝐵 · (𝐹𝑚)))
3129, 30eqeq12d 2756 . . . . . 6 (𝑘 = 𝑚 → (((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) ↔ ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3228, 31rspc 3623 . . . . 5 (𝑚𝑍 → (∀𝑘𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹𝑘)) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚))))
3326, 32mpan9 506 . . . 4 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹𝑚)))
341, 2, 4, 12, 18, 33isermulc2 15706 . . 3 (𝜑 → seq𝑀( + , (𝑘𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘𝑍 𝐴))
351, 2, 3, 9, 34isumclim 15805 . 2 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘𝑍 𝐴))
36 sumfc 15757 . 2 Σ𝑚𝑍 ((𝑘𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘𝑍 (𝐵 · 𝐴)
3735, 36eqtr3di 2795 1 (𝜑 → (𝐵 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (𝐵 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182   + caddc 11187   · cmul 11189  cz 12639  cuz 12903  seqcseq 14052  cli 15530  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  isummulc1  15811  trirecip  15911  geoisum1c  15928  binomcxplemnotnn0  44325  isumneg  45523
  Copyright terms: Public domain W3C validator