![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isummulc2 | Structured version Visualization version GIF version |
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumcl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumcl.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumcl.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumcl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumcl.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
summulc.6 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
isummulc2 | ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumfc 14904 | . 2 ⊢ Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴) | |
2 | isumcl.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | isumcl.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | eqidd 2796 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) | |
5 | summulc.6 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
7 | isumcl.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
8 | 6, 7 | mulcld 10512 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · 𝐴) ∈ ℂ) |
9 | 8 | fmpttd 6747 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ) |
10 | 9 | ffvelrnda 6721 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ) |
11 | isumcl.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
12 | isumcl.5 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
13 | 2, 3, 11, 7, 12 | isumclim2 14951 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
14 | 11, 7 | eqeltrd 2883 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
15 | 14 | ralrimiva 3149 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
16 | fveq2 6543 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
17 | 16 | eleq1d 2867 | . . . . . 6 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
18 | 17 | rspccva 3558 | . . . . 5 ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ ℂ) |
19 | 15, 18 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ ℂ) |
20 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
21 | ovex 7053 | . . . . . . . 8 ⊢ (𝐵 · 𝐴) ∈ V | |
22 | eqid 2795 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) = (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) | |
23 | 22 | fvmpt2 6650 | . . . . . . . 8 ⊢ ((𝑘 ∈ 𝑍 ∧ (𝐵 · 𝐴) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
24 | 20, 21, 23 | sylancl 586 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
25 | 11 | oveq2d 7037 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · (𝐹‘𝑘)) = (𝐵 · 𝐴)) |
26 | 24, 25 | eqtr4d 2834 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
27 | 26 | ralrimiva 3149 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
28 | nffvmpt1 6554 | . . . . . . 7 ⊢ Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) | |
29 | 28 | nfeq1 2962 | . . . . . 6 ⊢ Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)) |
30 | fveq2 6543 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) | |
31 | 16 | oveq2d 7037 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → (𝐵 · (𝐹‘𝑘)) = (𝐵 · (𝐹‘𝑚))) |
32 | 30, 31 | eqeq12d 2810 | . . . . . 6 ⊢ (𝑘 = 𝑚 → (((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) ↔ ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
33 | 29, 32 | rspc 3553 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
34 | 27, 33 | mpan9 507 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚))) |
35 | 2, 3, 5, 13, 19, 34 | isermulc2 14853 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
36 | 2, 3, 4, 10, 35 | isumclim 14950 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
37 | 1, 36 | syl5reqr 2846 | 1 ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 Vcvv 3437 ↦ cmpt 5045 dom cdm 5448 ‘cfv 6230 (class class class)co 7021 ℂcc 10386 + caddc 10391 · cmul 10393 ℤcz 11834 ℤ≥cuz 12098 seqcseq 13224 ⇝ cli 14680 Σcsu 14881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-inf2 8955 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 ax-pre-sup 10466 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-se 5408 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-isom 6239 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-1st 7550 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-oadd 7962 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-sup 8757 df-oi 8825 df-card 9219 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-div 11151 df-nn 11492 df-2 11553 df-3 11554 df-n0 11751 df-z 11835 df-uz 12099 df-rp 12245 df-fz 12748 df-fzo 12889 df-seq 13225 df-exp 13285 df-hash 13546 df-cj 14297 df-re 14298 df-im 14299 df-sqrt 14433 df-abs 14434 df-clim 14684 df-sum 14882 |
This theorem is referenced by: isummulc1 14956 trirecip 15056 geoisum1c 15074 binomcxplemnotnn0 40252 isumneg 41451 |
Copyright terms: Public domain | W3C validator |