| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isummulc2 | Structured version Visualization version GIF version | ||
| Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| isumcl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| isumcl.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| isumcl.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| isumcl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| isumcl.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| summulc.6 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| isummulc2 | ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumcl.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | isumcl.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | eqidd 2734 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) | |
| 4 | summulc.6 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| 6 | isumcl.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
| 7 | 5, 6 | mulcld 11139 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · 𝐴) ∈ ℂ) |
| 8 | 7 | fmpttd 7054 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)):𝑍⟶ℂ) |
| 9 | 8 | ffvelcdmda 7023 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) ∈ ℂ) |
| 10 | isumcl.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 11 | isumcl.5 | . . . . 5 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
| 12 | 1, 2, 10, 6, 11 | isumclim2 15667 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
| 13 | 10, 6 | eqeltrd 2833 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 14 | 13 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
| 15 | fveq2 6828 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 16 | 15 | eleq1d 2818 | . . . . . 6 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
| 17 | 16 | rspccva 3572 | . . . . 5 ⊢ ((∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ ℂ) |
| 18 | 14, 17 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ ℂ) |
| 19 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
| 20 | ovex 7385 | . . . . . . . 8 ⊢ (𝐵 · 𝐴) ∈ V | |
| 21 | eqid 2733 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) = (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴)) | |
| 22 | 21 | fvmpt2 6946 | . . . . . . . 8 ⊢ ((𝑘 ∈ 𝑍 ∧ (𝐵 · 𝐴) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
| 23 | 19, 20, 22 | sylancl 586 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · 𝐴)) |
| 24 | 10 | oveq2d 7368 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐵 · (𝐹‘𝑘)) = (𝐵 · 𝐴)) |
| 25 | 23, 24 | eqtr4d 2771 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
| 26 | 25 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘))) |
| 27 | nffvmpt1 6839 | . . . . . . 7 ⊢ Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) | |
| 28 | 27 | nfeq1 2911 | . . . . . 6 ⊢ Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)) |
| 29 | fveq2 6828 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚)) | |
| 30 | 15 | oveq2d 7368 | . . . . . . 7 ⊢ (𝑘 = 𝑚 → (𝐵 · (𝐹‘𝑘)) = (𝐵 · (𝐹‘𝑚))) |
| 31 | 29, 30 | eqeq12d 2749 | . . . . . 6 ⊢ (𝑘 = 𝑚 → (((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) ↔ ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
| 32 | 28, 31 | rspc 3561 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑘) = (𝐵 · (𝐹‘𝑘)) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚)))) |
| 33 | 26, 32 | mpan9 506 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · (𝐹‘𝑚))) |
| 34 | 1, 2, 4, 12, 18, 33 | isermulc2 15567 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))) ⇝ (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
| 35 | 1, 2, 3, 9, 34 | isumclim 15666 | . 2 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = (𝐵 · Σ𝑘 ∈ 𝑍 𝐴)) |
| 36 | sumfc 15618 | . 2 ⊢ Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ (𝐵 · 𝐴))‘𝑚) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴) | |
| 37 | 35, 36 | eqtr3di 2783 | 1 ⊢ (𝜑 → (𝐵 · Σ𝑘 ∈ 𝑍 𝐴) = Σ𝑘 ∈ 𝑍 (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ↦ cmpt 5174 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 + caddc 11016 · cmul 11018 ℤcz 12475 ℤ≥cuz 12738 seqcseq 13910 ⇝ cli 15393 Σcsu 15595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-sum 15596 |
| This theorem is referenced by: isummulc1 15672 trirecip 15772 geoisum1c 15789 binomcxplemnotnn0 44473 isumneg 45726 |
| Copyright terms: Public domain | W3C validator |