Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnaddcomli Structured version   Visualization version   GIF version

Theorem nnaddcomli 42297
Description: Version of addcomli 11460 for natural numbers. (Contributed by Steven Nguyen, 1-Aug-2023.)
Hypotheses
Ref Expression
nnaddcomli.1 𝐴 ∈ ℕ
nnaddcomli.2 𝐵 ∈ ℕ
nnaddcomli.3 (𝐴 + 𝐵) = 𝐶
Assertion
Ref Expression
nnaddcomli (𝐵 + 𝐴) = 𝐶

Proof of Theorem nnaddcomli
StepHypRef Expression
1 nnaddcomli.2 . . 3 𝐵 ∈ ℕ
2 nnaddcomli.1 . . 3 𝐴 ∈ ℕ
3 nnaddcom 42296 . . 3 ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐵 + 𝐴) = (𝐴 + 𝐵))
41, 2, 3mp2an 692 . 2 (𝐵 + 𝐴) = (𝐴 + 𝐵)
5 nnaddcomli.3 . 2 (𝐴 + 𝐵) = 𝐶
64, 5eqtri 2765 1 (𝐵 + 𝐴) = 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  (class class class)co 7438   + caddc 11165  cn 12273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761  ax-1cn 11220  ax-addcl 11222  ax-addass 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-nn 12274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator