Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnaddcom Structured version   Visualization version   GIF version

Theorem nnaddcom 42309
Description: Addition is commutative for natural numbers. Uses fewer axioms than addcom 11299. (Contributed by Steven Nguyen, 9-Dec-2022.)
Assertion
Ref Expression
nnaddcom ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem nnaddcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . . . 5 (𝑥 = 1 → (𝑥 + 𝐵) = (1 + 𝐵))
2 oveq2 7354 . . . . 5 (𝑥 = 1 → (𝐵 + 𝑥) = (𝐵 + 1))
31, 2eqeq12d 2747 . . . 4 (𝑥 = 1 → ((𝑥 + 𝐵) = (𝐵 + 𝑥) ↔ (1 + 𝐵) = (𝐵 + 1)))
43imbi2d 340 . . 3 (𝑥 = 1 → ((𝐵 ∈ ℕ → (𝑥 + 𝐵) = (𝐵 + 𝑥)) ↔ (𝐵 ∈ ℕ → (1 + 𝐵) = (𝐵 + 1))))
5 oveq1 7353 . . . . 5 (𝑥 = 𝑦 → (𝑥 + 𝐵) = (𝑦 + 𝐵))
6 oveq2 7354 . . . . 5 (𝑥 = 𝑦 → (𝐵 + 𝑥) = (𝐵 + 𝑦))
75, 6eqeq12d 2747 . . . 4 (𝑥 = 𝑦 → ((𝑥 + 𝐵) = (𝐵 + 𝑥) ↔ (𝑦 + 𝐵) = (𝐵 + 𝑦)))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ ℕ → (𝑥 + 𝐵) = (𝐵 + 𝑥)) ↔ (𝐵 ∈ ℕ → (𝑦 + 𝐵) = (𝐵 + 𝑦))))
9 oveq1 7353 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 + 𝐵) = ((𝑦 + 1) + 𝐵))
10 oveq2 7354 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐵 + 𝑥) = (𝐵 + (𝑦 + 1)))
119, 10eqeq12d 2747 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 + 𝐵) = (𝐵 + 𝑥) ↔ ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1))))
1211imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐵 ∈ ℕ → (𝑥 + 𝐵) = (𝐵 + 𝑥)) ↔ (𝐵 ∈ ℕ → ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1)))))
13 oveq1 7353 . . . . 5 (𝑥 = 𝐴 → (𝑥 + 𝐵) = (𝐴 + 𝐵))
14 oveq2 7354 . . . . 5 (𝑥 = 𝐴 → (𝐵 + 𝑥) = (𝐵 + 𝐴))
1513, 14eqeq12d 2747 . . . 4 (𝑥 = 𝐴 → ((𝑥 + 𝐵) = (𝐵 + 𝑥) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
1615imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ℕ → (𝑥 + 𝐵) = (𝐵 + 𝑥)) ↔ (𝐵 ∈ ℕ → (𝐴 + 𝐵) = (𝐵 + 𝐴))))
17 nnadd1com 42308 . . . 4 (𝐵 ∈ ℕ → (𝐵 + 1) = (1 + 𝐵))
1817eqcomd 2737 . . 3 (𝐵 ∈ ℕ → (1 + 𝐵) = (𝐵 + 1))
19 oveq1 7353 . . . . . 6 ((𝑦 + 𝐵) = (𝐵 + 𝑦) → ((𝑦 + 𝐵) + 1) = ((𝐵 + 𝑦) + 1))
2017oveq2d 7362 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝑦 + (𝐵 + 1)) = (𝑦 + (1 + 𝐵)))
2120adantl 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑦 + (𝐵 + 1)) = (𝑦 + (1 + 𝐵)))
22 nncn 12133 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2322adantr 480 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝑦 ∈ ℂ)
24 nncn 12133 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
2524adantl 481 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
26 1cnd 11107 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 1 ∈ ℂ)
2723, 25, 26addassd 11134 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 𝐵) + 1) = (𝑦 + (𝐵 + 1)))
2823, 26, 25addassd 11134 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 1) + 𝐵) = (𝑦 + (1 + 𝐵)))
2921, 27, 283eqtr4d 2776 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 𝐵) + 1) = ((𝑦 + 1) + 𝐵))
3025, 23, 26addassd 11134 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵 + 𝑦) + 1) = (𝐵 + (𝑦 + 1)))
3129, 30eqeq12d 2747 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝑦 + 𝐵) + 1) = ((𝐵 + 𝑦) + 1) ↔ ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1))))
3219, 31imbitrid 244 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 𝐵) = (𝐵 + 𝑦) → ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1))))
3332ex 412 . . . 4 (𝑦 ∈ ℕ → (𝐵 ∈ ℕ → ((𝑦 + 𝐵) = (𝐵 + 𝑦) → ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1)))))
3433a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐵 ∈ ℕ → (𝑦 + 𝐵) = (𝐵 + 𝑦)) → (𝐵 ∈ ℕ → ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1)))))
354, 8, 12, 16, 18, 34nnind 12143 . 2 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 + 𝐵) = (𝐵 + 𝐴)))
3635imp 406 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004  1c1 11007   + caddc 11009  cn 12125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-1cn 11064  ax-addcl 11066  ax-addass 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126
This theorem is referenced by:  nnaddcomli  42310  nnadddir  42311  nn0addcom  42503  zaddcom  42505
  Copyright terms: Public domain W3C validator