Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnaddcom Structured version   Visualization version   GIF version

Theorem nnaddcom 42318
Description: Addition is commutative for natural numbers. Uses fewer axioms than addcom 11421. (Contributed by Steven Nguyen, 9-Dec-2022.)
Assertion
Ref Expression
nnaddcom ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem nnaddcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . . . 5 (𝑥 = 1 → (𝑥 + 𝐵) = (1 + 𝐵))
2 oveq2 7413 . . . . 5 (𝑥 = 1 → (𝐵 + 𝑥) = (𝐵 + 1))
31, 2eqeq12d 2751 . . . 4 (𝑥 = 1 → ((𝑥 + 𝐵) = (𝐵 + 𝑥) ↔ (1 + 𝐵) = (𝐵 + 1)))
43imbi2d 340 . . 3 (𝑥 = 1 → ((𝐵 ∈ ℕ → (𝑥 + 𝐵) = (𝐵 + 𝑥)) ↔ (𝐵 ∈ ℕ → (1 + 𝐵) = (𝐵 + 1))))
5 oveq1 7412 . . . . 5 (𝑥 = 𝑦 → (𝑥 + 𝐵) = (𝑦 + 𝐵))
6 oveq2 7413 . . . . 5 (𝑥 = 𝑦 → (𝐵 + 𝑥) = (𝐵 + 𝑦))
75, 6eqeq12d 2751 . . . 4 (𝑥 = 𝑦 → ((𝑥 + 𝐵) = (𝐵 + 𝑥) ↔ (𝑦 + 𝐵) = (𝐵 + 𝑦)))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ ℕ → (𝑥 + 𝐵) = (𝐵 + 𝑥)) ↔ (𝐵 ∈ ℕ → (𝑦 + 𝐵) = (𝐵 + 𝑦))))
9 oveq1 7412 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 + 𝐵) = ((𝑦 + 1) + 𝐵))
10 oveq2 7413 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐵 + 𝑥) = (𝐵 + (𝑦 + 1)))
119, 10eqeq12d 2751 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 + 𝐵) = (𝐵 + 𝑥) ↔ ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1))))
1211imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐵 ∈ ℕ → (𝑥 + 𝐵) = (𝐵 + 𝑥)) ↔ (𝐵 ∈ ℕ → ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1)))))
13 oveq1 7412 . . . . 5 (𝑥 = 𝐴 → (𝑥 + 𝐵) = (𝐴 + 𝐵))
14 oveq2 7413 . . . . 5 (𝑥 = 𝐴 → (𝐵 + 𝑥) = (𝐵 + 𝐴))
1513, 14eqeq12d 2751 . . . 4 (𝑥 = 𝐴 → ((𝑥 + 𝐵) = (𝐵 + 𝑥) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
1615imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ℕ → (𝑥 + 𝐵) = (𝐵 + 𝑥)) ↔ (𝐵 ∈ ℕ → (𝐴 + 𝐵) = (𝐵 + 𝐴))))
17 nnadd1com 42317 . . . 4 (𝐵 ∈ ℕ → (𝐵 + 1) = (1 + 𝐵))
1817eqcomd 2741 . . 3 (𝐵 ∈ ℕ → (1 + 𝐵) = (𝐵 + 1))
19 oveq1 7412 . . . . . 6 ((𝑦 + 𝐵) = (𝐵 + 𝑦) → ((𝑦 + 𝐵) + 1) = ((𝐵 + 𝑦) + 1))
2017oveq2d 7421 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝑦 + (𝐵 + 1)) = (𝑦 + (1 + 𝐵)))
2120adantl 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑦 + (𝐵 + 1)) = (𝑦 + (1 + 𝐵)))
22 nncn 12248 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2322adantr 480 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝑦 ∈ ℂ)
24 nncn 12248 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
2524adantl 481 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
26 1cnd 11230 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 1 ∈ ℂ)
2723, 25, 26addassd 11257 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 𝐵) + 1) = (𝑦 + (𝐵 + 1)))
2823, 26, 25addassd 11257 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 1) + 𝐵) = (𝑦 + (1 + 𝐵)))
2921, 27, 283eqtr4d 2780 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 𝐵) + 1) = ((𝑦 + 1) + 𝐵))
3025, 23, 26addassd 11257 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵 + 𝑦) + 1) = (𝐵 + (𝑦 + 1)))
3129, 30eqeq12d 2751 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝑦 + 𝐵) + 1) = ((𝐵 + 𝑦) + 1) ↔ ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1))))
3219, 31imbitrid 244 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 𝐵) = (𝐵 + 𝑦) → ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1))))
3332ex 412 . . . 4 (𝑦 ∈ ℕ → (𝐵 ∈ ℕ → ((𝑦 + 𝐵) = (𝐵 + 𝑦) → ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1)))))
3433a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐵 ∈ ℕ → (𝑦 + 𝐵) = (𝐵 + 𝑦)) → (𝐵 ∈ ℕ → ((𝑦 + 1) + 𝐵) = (𝐵 + (𝑦 + 1)))))
354, 8, 12, 16, 18, 34nnind 12258 . 2 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 + 𝐵) = (𝐵 + 𝐴)))
3635imp 406 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  (class class class)co 7405  cc 11127  1c1 11130   + caddc 11132  cn 12240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-1cn 11187  ax-addcl 11189  ax-addass 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241
This theorem is referenced by:  nnaddcomli  42319  nnadddir  42320  nn0addcom  42493  zaddcom  42495
  Copyright terms: Public domain W3C validator