![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climabs0 | Structured version Visualization version GIF version |
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climabs0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climabs0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climabs0.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climabs0.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climabs0.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climabs0.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
Ref | Expression |
---|---|
climabs0 | ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climabs0.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | uztrn2 12881 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
3 | climabs0.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
4 | absidm 15312 | . . . . . . . . 9 ⊢ ((𝐹‘𝑘) ∈ ℂ → (abs‘(abs‘(𝐹‘𝑘))) = (abs‘(𝐹‘𝑘))) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(abs‘(𝐹‘𝑘))) = (abs‘(𝐹‘𝑘))) |
6 | 5 | breq1d 5162 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
7 | 2, 6 | sylan2 591 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
8 | 7 | anassrs 466 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
9 | 8 | ralbidva 3173 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
10 | 9 | rexbidva 3174 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
11 | 10 | ralbidv 3175 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
12 | climabs0.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | climabs0.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
14 | climabs0.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) | |
15 | 3 | abscld 15425 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
16 | 15 | recnd 11282 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℂ) |
17 | 1, 12, 13, 14, 16 | clim0c 15493 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥)) |
18 | climabs0.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
19 | eqidd 2729 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
20 | 1, 12, 18, 19, 3 | clim0c 15493 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
21 | 11, 17, 20 | 3bitr4rd 311 | 1 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 class class class wbr 5152 ‘cfv 6553 ℂcc 11146 0cc0 11148 < clt 11288 ℤcz 12598 ℤ≥cuz 12862 ℝ+crp 13016 abscabs 15223 ⇝ cli 15470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-sup 9475 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-n0 12513 df-z 12599 df-uz 12863 df-rp 13017 df-seq 14009 df-exp 14069 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-clim 15474 |
This theorem is referenced by: expcnv 15852 explecnv 15853 plyeq0lem 26172 |
Copyright terms: Public domain | W3C validator |