MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climabs0 Structured version   Visualization version   GIF version

Theorem climabs0 15473
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climabs0.1 𝑍 = (ℤ𝑀)
climabs0.2 (𝜑𝑀 ∈ ℤ)
climabs0.3 (𝜑𝐹𝑉)
climabs0.4 (𝜑𝐺𝑊)
climabs0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climabs0.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
climabs0 (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climabs0
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climabs0.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
21uztrn2 12787 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3 climabs0.5 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4 absidm 15214 . . . . . . . . 9 ((𝐹𝑘) ∈ ℂ → (abs‘(abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
53, 4syl 17 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘(abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
65breq1d 5116 . . . . . . 7 ((𝜑𝑘𝑍) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
72, 6sylan2 594 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
87anassrs 469 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
98ralbidva 3169 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
109rexbidva 3170 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
1110ralbidv 3171 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
12 climabs0.2 . . 3 (𝜑𝑀 ∈ ℤ)
13 climabs0.4 . . 3 (𝜑𝐺𝑊)
14 climabs0.6 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
153abscld 15327 . . . 4 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
1615recnd 11188 . . 3 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℂ)
171, 12, 13, 14, 16clim0c 15395 . 2 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥))
18 climabs0.3 . . 3 (𝜑𝐹𝑉)
19 eqidd 2734 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
201, 12, 18, 19, 3clim0c 15395 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
2111, 17, 203bitr4rd 312 1 (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061  wrex 3070   class class class wbr 5106  cfv 6497  cc 11054  0cc0 11056   < clt 11194  cz 12504  cuz 12768  +crp 12920  abscabs 15125  cli 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-seq 13913  df-exp 13974  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376
This theorem is referenced by:  expcnv  15754  explecnv  15755  plyeq0lem  25587
  Copyright terms: Public domain W3C validator