MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climabs0 Structured version   Visualization version   GIF version

Theorem climabs0 15393
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climabs0.1 𝑍 = (ℤ𝑀)
climabs0.2 (𝜑𝑀 ∈ ℤ)
climabs0.3 (𝜑𝐹𝑉)
climabs0.4 (𝜑𝐺𝑊)
climabs0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climabs0.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
climabs0 (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climabs0
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climabs0.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
21uztrn2 12702 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3 climabs0.5 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4 absidm 15134 . . . . . . . . 9 ((𝐹𝑘) ∈ ℂ → (abs‘(abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
53, 4syl 17 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘(abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
65breq1d 5102 . . . . . . 7 ((𝜑𝑘𝑍) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
72, 6sylan2 593 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
87anassrs 468 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
98ralbidva 3168 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
109rexbidva 3169 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
1110ralbidv 3170 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
12 climabs0.2 . . 3 (𝜑𝑀 ∈ ℤ)
13 climabs0.4 . . 3 (𝜑𝐺𝑊)
14 climabs0.6 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
153abscld 15247 . . . 4 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
1615recnd 11104 . . 3 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℂ)
171, 12, 13, 14, 16clim0c 15315 . 2 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥))
18 climabs0.3 . . 3 (𝜑𝐹𝑉)
19 eqidd 2737 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
201, 12, 18, 19, 3clim0c 15315 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
2111, 17, 203bitr4rd 311 1 (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  wrex 3070   class class class wbr 5092  cfv 6479  cc 10970  0cc0 10972   < clt 11110  cz 12420  cuz 12683  +crp 12831  abscabs 15044  cli 15292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-sup 9299  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-seq 13823  df-exp 13884  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296
This theorem is referenced by:  expcnv  15675  explecnv  15676  plyeq0lem  25477
  Copyright terms: Public domain W3C validator