![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climabs0 | Structured version Visualization version GIF version |
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climabs0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climabs0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climabs0.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climabs0.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climabs0.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climabs0.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
Ref | Expression |
---|---|
climabs0 | ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climabs0.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | uztrn2 11948 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
3 | climabs0.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
4 | absidm 14404 | . . . . . . . . 9 ⊢ ((𝐹‘𝑘) ∈ ℂ → (abs‘(abs‘(𝐹‘𝑘))) = (abs‘(𝐹‘𝑘))) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(abs‘(𝐹‘𝑘))) = (abs‘(𝐹‘𝑘))) |
6 | 5 | breq1d 4853 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
7 | 2, 6 | sylan2 587 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
8 | 7 | anassrs 460 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
9 | 8 | ralbidva 3166 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
10 | 9 | rexbidva 3230 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
11 | 10 | ralbidv 3167 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
12 | climabs0.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | climabs0.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
14 | climabs0.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) | |
15 | 3 | abscld 14516 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
16 | 15 | recnd 10357 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℂ) |
17 | 1, 12, 13, 14, 16 | clim0c 14579 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥)) |
18 | climabs0.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
19 | eqidd 2800 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
20 | 1, 12, 18, 19, 3 | clim0c 14579 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
21 | 11, 17, 20 | 3bitr4rd 304 | 1 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 class class class wbr 4843 ‘cfv 6101 ℂcc 10222 0cc0 10224 < clt 10363 ℤcz 11666 ℤ≥cuz 11930 ℝ+crp 12074 abscabs 14315 ⇝ cli 14556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-seq 13056 df-exp 13115 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 |
This theorem is referenced by: expcnv 14934 explecnv 14935 plyeq0lem 24307 lgamcvg2 25133 |
Copyright terms: Public domain | W3C validator |