| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrid | Structured version Visualization version GIF version | ||
| Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xrletrid.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrletrid.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrletrid.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrid.4 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| xrletrid | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrid.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrid.4 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
| 3 | xrletrid.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrletrid.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrletri3 13055 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| 7 | 1, 2, 6 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ℝ*cxr 11152 ≤ cle 11154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 |
| This theorem is referenced by: supxrre 13228 infxrre 13238 ixxub 13268 ixxlb 13269 pcadd2 16804 psmetsym 24226 xmetsym 24263 imasdsf1olem 24289 ovolunnul 25429 ovolicc 25452 voliunlem3 25481 uniioovol 25508 uniiccvol 25509 ismbfd 25568 mbflimsup 25595 itg2itg1 25665 itg2seq 25671 itg2eqa 25674 itg2split 25678 itg2mono 25682 deg1add 26036 deg1mul2 26047 deg1tm 26052 xrgepnfd 45454 supxrge 45461 infxrpnf 45568 eliccnelico 45653 liminfgelimsup 45904 liminfgelimsupuz 45910 liminflimsupclim 45929 xlimliminflimsup 45984 ismbl4 46115 rrxsnicc 46422 sge0fsum 46509 sge0split 46531 sge0iunmptlemre 46537 sge0isum 46549 sge0xaddlem2 46556 sge0reuz 46569 meale0eq0 46600 carageniuncl 46645 caratheodorylem2 46649 caragenel2d 46654 omess0 46656 ovn0lem 46687 hoidmv1lelem2 46714 hoidmv1lelem3 46715 hoidmvlelem4 46720 ovnhoi 46725 ovolval2lem 46765 ovolval5lem3 46776 |
| Copyright terms: Public domain | W3C validator |