MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrletrid Structured version   Visualization version   GIF version

Theorem xrletrid 13193
Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrletrid.1 (𝜑𝐴 ∈ ℝ*)
xrletrid.2 (𝜑𝐵 ∈ ℝ*)
xrletrid.3 (𝜑𝐴𝐵)
xrletrid.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
xrletrid (𝜑𝐴 = 𝐵)

Proof of Theorem xrletrid
StepHypRef Expression
1 xrletrid.3 . 2 (𝜑𝐴𝐵)
2 xrletrid.4 . 2 (𝜑𝐵𝐴)
3 xrletrid.1 . . 3 (𝜑𝐴 ∈ ℝ*)
4 xrletrid.2 . . 3 (𝜑𝐵 ∈ ℝ*)
5 xrletri3 13192 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
71, 2, 6mpbir2and 713 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105   class class class wbr 5147  *cxr 11291  cle 11293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-pre-lttri 11226  ax-pre-lttrn 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298
This theorem is referenced by:  supxrre  13365  infxrre  13374  ixxub  13404  ixxlb  13405  pcadd2  16923  psmetsym  24335  xmetsym  24372  imasdsf1olem  24398  ovolunnul  25548  ovolicc  25571  voliunlem3  25600  uniioovol  25627  uniiccvol  25628  ismbfd  25687  mbflimsup  25714  itg2itg1  25785  itg2seq  25791  itg2eqa  25794  itg2split  25798  itg2mono  25802  deg1add  26156  deg1mul2  26167  deg1tm  26172  xrgepnfd  45280  supxrge  45287  infxrpnf  45395  eliccnelico  45481  liminfgelimsup  45737  liminfgelimsupuz  45743  liminflimsupclim  45762  xlimliminflimsup  45817  ismbl4  45948  rrxsnicc  46255  sge0fsum  46342  sge0split  46364  sge0iunmptlemre  46370  sge0isum  46382  sge0xaddlem2  46389  sge0reuz  46402  meale0eq0  46433  carageniuncl  46478  caratheodorylem2  46482  caragenel2d  46487  omess0  46489  ovn0lem  46520  hoidmv1lelem2  46547  hoidmv1lelem3  46548  hoidmvlelem4  46553  ovnhoi  46558  ovolval2lem  46598  ovolval5lem3  46609
  Copyright terms: Public domain W3C validator