Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrletrid | Structured version Visualization version GIF version |
Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrletrid.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrletrid.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrletrid.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrletrid.4 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
xrletrid | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrid.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrletrid.4 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
3 | xrletrid.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrletrid.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrletri3 12817 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
7 | 1, 2, 6 | mpbir2and 709 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ℝ*cxr 10939 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: supxrre 12990 infxrre 12999 ixxub 13029 ixxlb 13030 pcadd2 16519 psmetsym 23371 xmetsym 23408 imasdsf1olem 23434 ovolunnul 24569 ovolicc 24592 voliunlem3 24621 uniioovol 24648 uniiccvol 24649 ismbfd 24708 mbflimsup 24735 itg2itg1 24806 itg2seq 24812 itg2eqa 24815 itg2split 24819 itg2mono 24823 deg1add 25173 deg1mul2 25184 deg1tm 25188 xrgepnfd 42760 supxrge 42767 infxrpnf 42876 eliccnelico 42957 liminfgelimsup 43213 liminfgelimsupuz 43219 liminflimsupclim 43238 xlimliminflimsup 43293 ismbl4 43424 rrxsnicc 43731 sge0fsum 43815 sge0split 43837 sge0iunmptlemre 43843 sge0isum 43855 sge0xaddlem2 43862 sge0reuz 43875 meale0eq0 43906 carageniuncl 43951 caratheodorylem2 43955 caragenel2d 43960 omess0 43962 ovn0lem 43993 hoidmv1lelem2 44020 hoidmv1lelem3 44021 hoidmvlelem4 44026 ovnhoi 44031 ovolval2lem 44071 ovolval5lem3 44082 |
Copyright terms: Public domain | W3C validator |