| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrid | Structured version Visualization version GIF version | ||
| Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xrletrid.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrletrid.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrletrid.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrid.4 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| xrletrid | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrid.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrid.4 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
| 3 | xrletrid.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrletrid.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrletri3 13114 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| 7 | 1, 2, 6 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ℝ*cxr 11207 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: supxrre 13287 infxrre 13297 ixxub 13327 ixxlb 13328 pcadd2 16861 psmetsym 24198 xmetsym 24235 imasdsf1olem 24261 ovolunnul 25401 ovolicc 25424 voliunlem3 25453 uniioovol 25480 uniiccvol 25481 ismbfd 25540 mbflimsup 25567 itg2itg1 25637 itg2seq 25643 itg2eqa 25646 itg2split 25650 itg2mono 25654 deg1add 26008 deg1mul2 26019 deg1tm 26024 xrgepnfd 45327 supxrge 45334 infxrpnf 45442 eliccnelico 45527 liminfgelimsup 45780 liminfgelimsupuz 45786 liminflimsupclim 45805 xlimliminflimsup 45860 ismbl4 45991 rrxsnicc 46298 sge0fsum 46385 sge0split 46407 sge0iunmptlemre 46413 sge0isum 46425 sge0xaddlem2 46432 sge0reuz 46445 meale0eq0 46476 carageniuncl 46521 caratheodorylem2 46525 caragenel2d 46530 omess0 46532 ovn0lem 46563 hoidmv1lelem2 46590 hoidmv1lelem3 46591 hoidmvlelem4 46596 ovnhoi 46601 ovolval2lem 46641 ovolval5lem3 46652 |
| Copyright terms: Public domain | W3C validator |