| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrid | Structured version Visualization version GIF version | ||
| Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xrletrid.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrletrid.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrletrid.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrid.4 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| xrletrid | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrid.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrid.4 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
| 3 | xrletrid.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrletrid.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrletri3 13170 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| 7 | 1, 2, 6 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ℝ*cxr 11268 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 |
| This theorem is referenced by: supxrre 13343 infxrre 13353 ixxub 13383 ixxlb 13384 pcadd2 16910 psmetsym 24249 xmetsym 24286 imasdsf1olem 24312 ovolunnul 25453 ovolicc 25476 voliunlem3 25505 uniioovol 25532 uniiccvol 25533 ismbfd 25592 mbflimsup 25619 itg2itg1 25689 itg2seq 25695 itg2eqa 25698 itg2split 25702 itg2mono 25706 deg1add 26060 deg1mul2 26071 deg1tm 26076 xrgepnfd 45358 supxrge 45365 infxrpnf 45473 eliccnelico 45558 liminfgelimsup 45811 liminfgelimsupuz 45817 liminflimsupclim 45836 xlimliminflimsup 45891 ismbl4 46022 rrxsnicc 46329 sge0fsum 46416 sge0split 46438 sge0iunmptlemre 46444 sge0isum 46456 sge0xaddlem2 46463 sge0reuz 46476 meale0eq0 46507 carageniuncl 46552 caratheodorylem2 46556 caragenel2d 46561 omess0 46563 ovn0lem 46594 hoidmv1lelem2 46621 hoidmv1lelem3 46622 hoidmvlelem4 46627 ovnhoi 46632 ovolval2lem 46672 ovolval5lem3 46683 |
| Copyright terms: Public domain | W3C validator |