Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrletrid | Structured version Visualization version GIF version |
Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrletrid.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrletrid.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrletrid.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrletrid.4 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
xrletrid | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrid.3 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrletrid.4 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
3 | xrletrid.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrletrid.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrletri3 12961 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
7 | 1, 2, 6 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 ℝ*cxr 11081 ≤ cle 11083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-pre-lttri 11018 ax-pre-lttrn 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 |
This theorem is referenced by: supxrre 13134 infxrre 13143 ixxub 13173 ixxlb 13174 pcadd2 16661 psmetsym 23535 xmetsym 23572 imasdsf1olem 23598 ovolunnul 24736 ovolicc 24759 voliunlem3 24788 uniioovol 24815 uniiccvol 24816 ismbfd 24875 mbflimsup 24902 itg2itg1 24973 itg2seq 24979 itg2eqa 24982 itg2split 24986 itg2mono 24990 deg1add 25340 deg1mul2 25351 deg1tm 25355 xrgepnfd 43106 supxrge 43113 infxrpnf 43222 eliccnelico 43304 liminfgelimsup 43560 liminfgelimsupuz 43566 liminflimsupclim 43585 xlimliminflimsup 43640 ismbl4 43771 rrxsnicc 44078 sge0fsum 44163 sge0split 44185 sge0iunmptlemre 44191 sge0isum 44203 sge0xaddlem2 44210 sge0reuz 44223 meale0eq0 44254 carageniuncl 44299 caratheodorylem2 44303 caragenel2d 44308 omess0 44310 ovn0lem 44341 hoidmv1lelem2 44368 hoidmv1lelem3 44369 hoidmvlelem4 44374 ovnhoi 44379 ovolval2lem 44419 ovolval5lem3 44430 |
Copyright terms: Public domain | W3C validator |