MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrletrid Structured version   Visualization version   GIF version

Theorem xrletrid 13169
Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrletrid.1 (𝜑𝐴 ∈ ℝ*)
xrletrid.2 (𝜑𝐵 ∈ ℝ*)
xrletrid.3 (𝜑𝐴𝐵)
xrletrid.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
xrletrid (𝜑𝐴 = 𝐵)

Proof of Theorem xrletrid
StepHypRef Expression
1 xrletrid.3 . 2 (𝜑𝐴𝐵)
2 xrletrid.4 . 2 (𝜑𝐵𝐴)
3 xrletrid.1 . . 3 (𝜑𝐴 ∈ ℝ*)
4 xrletrid.2 . . 3 (𝜑𝐵 ∈ ℝ*)
5 xrletri3 13168 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
63, 4, 5syl2anc 582 . 2 (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
71, 2, 6mpbir2and 711 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098   class class class wbr 5149  *cxr 11279  cle 11281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-pre-lttri 11214  ax-pre-lttrn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286
This theorem is referenced by:  supxrre  13341  infxrre  13350  ixxub  13380  ixxlb  13381  pcadd2  16862  psmetsym  24260  xmetsym  24297  imasdsf1olem  24323  ovolunnul  25473  ovolicc  25496  voliunlem3  25525  uniioovol  25552  uniiccvol  25553  ismbfd  25612  mbflimsup  25639  itg2itg1  25710  itg2seq  25716  itg2eqa  25719  itg2split  25723  itg2mono  25727  deg1add  26083  deg1mul2  26094  deg1tm  26099  xrgepnfd  44851  supxrge  44858  infxrpnf  44966  eliccnelico  45052  liminfgelimsup  45308  liminfgelimsupuz  45314  liminflimsupclim  45333  xlimliminflimsup  45388  ismbl4  45519  rrxsnicc  45826  sge0fsum  45913  sge0split  45935  sge0iunmptlemre  45941  sge0isum  45953  sge0xaddlem2  45960  sge0reuz  45973  meale0eq0  46004  carageniuncl  46049  caratheodorylem2  46053  caragenel2d  46058  omess0  46060  ovn0lem  46091  hoidmv1lelem2  46118  hoidmv1lelem3  46119  hoidmvlelem4  46124  ovnhoi  46129  ovolval2lem  46169  ovolval5lem3  46180
  Copyright terms: Public domain W3C validator