| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbicc2 | Structured version Visualization version GIF version | ||
| Description: The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| lbicc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) | |
| 2 | xrleid 13053 | . . 3 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐴) |
| 4 | simp3 1138 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 5 | elicc1 13292 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
| 7 | 1, 3, 4, 6 | mpbir3and 1343 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝ*cxr 11148 ≤ cle 11150 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-icc 13255 |
| This theorem is referenced by: icccmplem1 24709 reconnlem2 24714 oprpiece1res1 24847 pcoass 24922 ivthlem1 25350 ivth2 25354 ivthle 25355 ivthle2 25356 evthicc 25358 ovolicc2lem5 25420 dyadmaxlem 25496 rolle 25892 cmvth 25893 cmvthOLD 25894 mvth 25895 dvlip 25896 c1liplem1 25899 dveq0 25903 dvgt0lem1 25905 lhop1lem 25916 dvcnvrelem1 25920 dvcvx 25923 dvfsumle 25924 dvfsumleOLD 25925 dvfsumge 25926 dvfsumabs 25927 dvfsumlem2 25931 dvfsumlem2OLD 25932 ftc2 25949 ftc2ditglem 25950 itgparts 25952 itgsubstlem 25953 itgpowd 25955 taylfval 26264 tayl0 26267 efcvx 26357 pige3ALT 26427 logccv 26570 loglesqrt 26669 eliccioo 32871 ftc2re 34566 cvmliftlem6 35267 cvmliftlem8 35269 cvmliftlem9 35270 cvmliftlem10 35271 cvmliftlem13 35273 ivthALT 36313 ftc2nc 37686 areacirc 37697 iccintsng 45508 icccncfext 45872 cncfiooicclem1 45878 dvbdfbdioolem1 45913 itgsin0pilem1 45935 itgcoscmulx 45954 itgsincmulx 45959 fourierdlem20 46112 fourierdlem51 46142 fourierdlem54 46145 fourierdlem64 46155 fourierdlem73 46164 fourierdlem81 46172 fourierdlem102 46193 fourierdlem103 46194 fourierdlem104 46195 fourierdlem114 46205 etransclem46 46265 hoidmv1lelem1 46576 |
| Copyright terms: Public domain | W3C validator |