MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbicc2 Structured version   Visualization version   GIF version

Theorem lbicc2 13401
Description: The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
lbicc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))

Proof of Theorem lbicc2
StepHypRef Expression
1 simp1 1136 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ ℝ*)
2 xrleid 13087 . . 3 (𝐴 ∈ ℝ*𝐴𝐴)
323ad2ant1 1133 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐴)
4 simp3 1138 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
5 elicc1 13326 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
653adant3 1132 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
71, 3, 4, 6mpbir3and 1343 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2109   class class class wbr 5102  (class class class)co 7369  *cxr 11183  cle 11185  [,]cicc 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-icc 13289
This theorem is referenced by:  icccmplem1  24744  reconnlem2  24749  oprpiece1res1  24882  pcoass  24957  ivthlem1  25385  ivth2  25389  ivthle  25390  ivthle2  25391  evthicc  25393  ovolicc2lem5  25455  dyadmaxlem  25531  rolle  25927  cmvth  25928  cmvthOLD  25929  mvth  25930  dvlip  25931  c1liplem1  25934  dveq0  25938  dvgt0lem1  25940  lhop1lem  25951  dvcnvrelem1  25955  dvcvx  25958  dvfsumle  25959  dvfsumleOLD  25960  dvfsumge  25961  dvfsumabs  25962  dvfsumlem2  25966  dvfsumlem2OLD  25967  ftc2  25984  ftc2ditglem  25985  itgparts  25987  itgsubstlem  25988  itgpowd  25990  taylfval  26299  tayl0  26302  efcvx  26392  pige3ALT  26462  logccv  26605  loglesqrt  26704  eliccioo  32901  ftc2re  34582  cvmliftlem6  35270  cvmliftlem8  35272  cvmliftlem9  35273  cvmliftlem10  35274  cvmliftlem13  35276  ivthALT  36316  ftc2nc  37689  areacirc  37700  iccintsng  45514  icccncfext  45878  cncfiooicclem1  45884  dvbdfbdioolem1  45919  itgsin0pilem1  45941  itgcoscmulx  45960  itgsincmulx  45965  fourierdlem20  46118  fourierdlem51  46148  fourierdlem54  46151  fourierdlem64  46161  fourierdlem73  46170  fourierdlem81  46178  fourierdlem102  46199  fourierdlem103  46200  fourierdlem104  46201  fourierdlem114  46211  etransclem46  46271  hoidmv1lelem1  46582
  Copyright terms: Public domain W3C validator