MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbicc2 Structured version   Visualization version   GIF version

Theorem lbicc2 13242
Description: The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
lbicc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))

Proof of Theorem lbicc2
StepHypRef Expression
1 simp1 1136 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ ℝ*)
2 xrleid 12931 . . 3 (𝐴 ∈ ℝ*𝐴𝐴)
323ad2ant1 1133 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐴)
4 simp3 1138 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
5 elicc1 13169 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
653adant3 1132 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
71, 3, 4, 6mpbir3and 1342 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087  wcel 2104   class class class wbr 5081  (class class class)co 7307  *cxr 11054  cle 11056  [,]cicc 13128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-pre-lttri 10991  ax-pre-lttrn 10992
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-icc 13132
This theorem is referenced by:  icccmplem1  24030  reconnlem2  24035  oprpiece1res1  24159  pcoass  24232  ivthlem1  24660  ivth2  24664  ivthle  24665  ivthle2  24666  evthicc  24668  ovolicc2lem5  24730  dyadmaxlem  24806  rolle  25199  cmvth  25200  mvth  25201  dvlip  25202  c1liplem1  25205  dveq0  25209  dvgt0lem1  25211  lhop1lem  25222  dvcnvrelem1  25226  dvcvx  25229  dvfsumle  25230  dvfsumge  25231  dvfsumabs  25232  dvfsumlem2  25236  ftc2  25253  ftc2ditglem  25254  itgparts  25256  itgsubstlem  25257  itgpowd  25259  taylfval  25563  tayl0  25566  efcvx  25653  pige3ALT  25721  logccv  25863  loglesqrt  25956  eliccioo  31250  ftc2re  32623  cvmliftlem6  33297  cvmliftlem8  33299  cvmliftlem9  33300  cvmliftlem10  33301  cvmliftlem13  33303  ivthALT  34569  ftc2nc  35903  areacirc  35914  iccintsng  43110  icccncfext  43477  cncfiooicclem1  43483  dvbdfbdioolem1  43518  itgsin0pilem1  43540  itgcoscmulx  43559  itgsincmulx  43564  fourierdlem20  43717  fourierdlem51  43747  fourierdlem54  43750  fourierdlem64  43760  fourierdlem73  43769  fourierdlem81  43777  fourierdlem102  43798  fourierdlem103  43799  fourierdlem104  43800  fourierdlem114  43810  etransclem46  43870  hoidmv1lelem1  44179
  Copyright terms: Public domain W3C validator