| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbicc2 | Structured version Visualization version GIF version | ||
| Description: The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| lbicc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) | |
| 2 | xrleid 13175 | . . 3 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐴) |
| 4 | simp3 1138 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 5 | elicc1 13413 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
| 7 | 1, 3, 4, 6 | mpbir3and 1342 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℝ*cxr 11276 ≤ cle 11278 [,]cicc 13372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-icc 13376 |
| This theorem is referenced by: icccmplem1 24780 reconnlem2 24785 oprpiece1res1 24918 pcoass 24993 ivthlem1 25422 ivth2 25426 ivthle 25427 ivthle2 25428 evthicc 25430 ovolicc2lem5 25492 dyadmaxlem 25568 rolle 25964 cmvth 25965 cmvthOLD 25966 mvth 25967 dvlip 25968 c1liplem1 25971 dveq0 25975 dvgt0lem1 25977 lhop1lem 25988 dvcnvrelem1 25992 dvcvx 25995 dvfsumle 25996 dvfsumleOLD 25997 dvfsumge 25998 dvfsumabs 25999 dvfsumlem2 26003 dvfsumlem2OLD 26004 ftc2 26021 ftc2ditglem 26022 itgparts 26024 itgsubstlem 26025 itgpowd 26027 taylfval 26336 tayl0 26339 efcvx 26429 pige3ALT 26498 logccv 26641 loglesqrt 26740 eliccioo 32853 ftc2re 34572 cvmliftlem6 35254 cvmliftlem8 35256 cvmliftlem9 35257 cvmliftlem10 35258 cvmliftlem13 35260 ivthALT 36295 ftc2nc 37668 areacirc 37679 iccintsng 45493 icccncfext 45859 cncfiooicclem1 45865 dvbdfbdioolem1 45900 itgsin0pilem1 45922 itgcoscmulx 45941 itgsincmulx 45946 fourierdlem20 46099 fourierdlem51 46129 fourierdlem54 46132 fourierdlem64 46142 fourierdlem73 46151 fourierdlem81 46159 fourierdlem102 46180 fourierdlem103 46181 fourierdlem104 46182 fourierdlem114 46192 etransclem46 46252 hoidmv1lelem1 46563 |
| Copyright terms: Public domain | W3C validator |