MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbicc2 Structured version   Visualization version   GIF version

Theorem lbicc2 13178
Description: The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
lbicc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))

Proof of Theorem lbicc2
StepHypRef Expression
1 simp1 1134 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ ℝ*)
2 xrleid 12867 . . 3 (𝐴 ∈ ℝ*𝐴𝐴)
323ad2ant1 1131 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐴)
4 simp3 1136 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
5 elicc1 13105 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
653adant3 1130 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
71, 3, 4, 6mpbir3and 1340 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085  wcel 2109   class class class wbr 5078  (class class class)co 7268  *cxr 10992  cle 10994  [,]cicc 13064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-pre-lttri 10929  ax-pre-lttrn 10930
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-icc 13068
This theorem is referenced by:  icccmplem1  23966  reconnlem2  23971  oprpiece1res1  24095  pcoass  24168  ivthlem1  24596  ivth2  24600  ivthle  24601  ivthle2  24602  evthicc  24604  ovolicc2lem5  24666  dyadmaxlem  24742  rolle  25135  cmvth  25136  mvth  25137  dvlip  25138  c1liplem1  25141  dveq0  25145  dvgt0lem1  25147  lhop1lem  25158  dvcnvrelem1  25162  dvcvx  25165  dvfsumle  25166  dvfsumge  25167  dvfsumabs  25168  dvfsumlem2  25172  ftc2  25189  ftc2ditglem  25190  itgparts  25192  itgsubstlem  25193  itgpowd  25195  taylfval  25499  tayl0  25502  efcvx  25589  pige3ALT  25657  logccv  25799  loglesqrt  25892  eliccioo  31184  ftc2re  32557  cvmliftlem6  33231  cvmliftlem8  33233  cvmliftlem9  33234  cvmliftlem10  33235  cvmliftlem13  33237  ivthALT  34503  ftc2nc  35838  areacirc  35849  iccintsng  43015  icccncfext  43382  cncfiooicclem1  43388  dvbdfbdioolem1  43423  itgsin0pilem1  43445  itgcoscmulx  43464  itgsincmulx  43469  fourierdlem20  43622  fourierdlem51  43652  fourierdlem54  43655  fourierdlem64  43665  fourierdlem73  43674  fourierdlem81  43682  fourierdlem102  43703  fourierdlem103  43704  fourierdlem104  43705  fourierdlem114  43715  etransclem46  43775  hoidmv1lelem1  44083
  Copyright terms: Public domain W3C validator