Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbicc2 | Structured version Visualization version GIF version |
Description: The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
lbicc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) | |
2 | xrleid 12965 | . . 3 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
3 | 2 | 3ad2ant1 1132 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐴) |
4 | simp3 1137 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
5 | elicc1 13203 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
6 | 5 | 3adant3 1131 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
7 | 1, 3, 4, 6 | mpbir3and 1341 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5087 (class class class)co 7317 ℝ*cxr 11088 ≤ cle 11090 [,]cicc 13162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-pre-lttri 11025 ax-pre-lttrn 11026 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-oprab 7321 df-mpo 7322 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-icc 13166 |
This theorem is referenced by: icccmplem1 24068 reconnlem2 24073 oprpiece1res1 24197 pcoass 24270 ivthlem1 24698 ivth2 24702 ivthle 24703 ivthle2 24704 evthicc 24706 ovolicc2lem5 24768 dyadmaxlem 24844 rolle 25237 cmvth 25238 mvth 25239 dvlip 25240 c1liplem1 25243 dveq0 25247 dvgt0lem1 25249 lhop1lem 25260 dvcnvrelem1 25264 dvcvx 25267 dvfsumle 25268 dvfsumge 25269 dvfsumabs 25270 dvfsumlem2 25274 ftc2 25291 ftc2ditglem 25292 itgparts 25294 itgsubstlem 25295 itgpowd 25297 taylfval 25601 tayl0 25604 efcvx 25691 pige3ALT 25759 logccv 25901 loglesqrt 25994 eliccioo 31340 ftc2re 32718 cvmliftlem6 33391 cvmliftlem8 33393 cvmliftlem9 33394 cvmliftlem10 33395 cvmliftlem13 33397 ivthALT 34598 ftc2nc 35931 areacirc 35942 iccintsng 43311 icccncfext 43678 cncfiooicclem1 43684 dvbdfbdioolem1 43719 itgsin0pilem1 43741 itgcoscmulx 43760 itgsincmulx 43765 fourierdlem20 43918 fourierdlem51 43948 fourierdlem54 43951 fourierdlem64 43961 fourierdlem73 43970 fourierdlem81 43978 fourierdlem102 43999 fourierdlem103 44000 fourierdlem104 44001 fourierdlem114 44011 etransclem46 44071 hoidmv1lelem1 44380 |
Copyright terms: Public domain | W3C validator |