MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexri Structured version   Visualization version   GIF version

Theorem rexri 11232
Description: A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
rexri.1 𝐴 ∈ ℝ
Assertion
Ref Expression
rexri 𝐴 ∈ ℝ*

Proof of Theorem rexri
StepHypRef Expression
1 rexri.1 . 2 𝐴 ∈ ℝ
2 rexr 11220 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
31, 2ax-mp 5 1 𝐴 ∈ ℝ*
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cr 11067  *cxr 11207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-xr 11212
This theorem is referenced by:  1xr  11233  xnn0n0n1ge2b  13092  hashgt23el  14389  hashge2el2difr  14446  tanhbnd  16129  halfleoddlt  16332  oprpiece1res1  24849  oprpiece1res2  24850  pcoass  24924  vitalilem4  25512  neghalfpirx  26375  sincosq1sgn  26407  sincosq2sgn  26408  sincosq4sgn  26410  coseq00topi  26411  coseq0negpitopi  26412  tanabsge  26415  sinq12gt0  26416  cosq14gt0  26419  cos02pilt1  26435  cosq34lt1  26436  cosordlem  26439  cos0pilt1  26441  tanord1  26446  tanord  26447  tanregt0  26448  negpitopissre  26449  ellogrn  26468  logimclad  26481  argregt0  26519  argimgt0  26521  argimlt0  26522  dvloglem  26557  logf1o2  26559  efopnlem2  26566  isosctrlem1  26728  asinneg  26796  asinsinlem  26801  acoscos  26803  reasinsin  26806  atanlogsublem  26825  atantan  26833  atanbndlem  26835  atanbnd  26836  atan1  26838  dchrvmasumlem2  27409  dchrvmasumiflem1  27412  tgldimor  28429  upgrfi  29018  umgrislfupgrlem  29049  upgrewlkle2  29534  upgr2pthnlp  29662  nmoptrii  32023  nmopcoi  32024  sgnsgn  32766  rtelextdg2lem  33716  chtvalz  34620  lfuhgr2  35106  usgrcyclgt2v  35118  acycgr2v  35137  cusgracyclt3v  35143  dnizeq0  36463  cnndvlem1  36525  bj-pinftyccb  37209  bj-minftyccb  37213  bj-pinftynminfty  37215  sin2h  37604  cos2h  37605  tan2h  37606  asindmre  37697  dvasin  37698  dvacos  37699  areacirclem1  37702  acos1half  42346  areaquad  43205  isosctrlem1ALT  44923  sineq0ALT  44926  itgsin0pilem1  45948  fourierdlem24  46129  fourierdlem38  46143  fourierdlem43  46148  fourierdlem44  46149  fourierdlem46  46150  fourierdlem62  46166  fourierdlem74  46178  fourierdlem75  46179  fourierdlem85  46189  fourierdlem88  46192  fourierdlem93  46197  fourierdlem102  46206  fourierdlem103  46207  fourierdlem104  46208  fourierdlem111  46215  fourierdlem112  46216  fourierdlem114  46218  sqwvfoura  46226  sqwvfourb  46227  fourierswlem  46228  fouriersw  46229  fouriercn  46230  salexct2  46337  rehalfge1  47336  mod42tp1mod8  47603  bgoldbtbndlem1  47806  bgoldbtbnd  47810  pgrpgt2nabl  48354  sepfsepc  48916
  Copyright terms: Public domain W3C validator