Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddasslem18 | Structured version Visualization version GIF version |
Description: Lemma for paddass 37878. Combine paddasslem16 37875 and paddasslem17 37876. (Contributed by NM, 12-Jan-2012.) |
Ref | Expression |
---|---|
paddass.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddass.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
paddasslem18 | ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | eqid 2733 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | paddass.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | paddass.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
5 | 1, 2, 3, 4 | paddasslem16 37875 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
6 | 5 | 3expa 1116 | . 2 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
7 | 3, 4 | paddasslem17 37876 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ ¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
8 | 7 | 3expa 1116 | . 2 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ ¬ ((𝑋 ≠ ∅ ∧ (𝑌 + 𝑍) ≠ ∅) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
9 | 6, 8 | pm2.61dan 809 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) ⊆ ((𝑋 + 𝑌) + 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ⊆ wss 3889 ∅c0 4259 ‘cfv 6447 (class class class)co 7295 lecple 16997 joincjn 18057 Atomscatm 37303 HLchlt 37390 +𝑃cpadd 37835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-1st 7851 df-2nd 7852 df-proset 18041 df-poset 18059 df-plt 18076 df-lub 18092 df-glb 18093 df-join 18094 df-meet 18095 df-p0 18171 df-lat 18178 df-clat 18245 df-oposet 37216 df-ol 37218 df-oml 37219 df-covers 37306 df-ats 37307 df-atl 37338 df-cvlat 37362 df-hlat 37391 df-padd 37836 |
This theorem is referenced by: paddass 37878 |
Copyright terms: Public domain | W3C validator |