![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimne | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value in the extended reals is in the subspace of sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smfpimne.p | β’ β²π₯π |
smfpimne.x | β’ β²π₯πΉ |
smfpimne.s | β’ (π β π β SAlg) |
smfpimne.f | β’ (π β πΉ β (SMblFnβπ)) |
smfpimne.d | β’ π· = dom πΉ |
smfpimne.a | β’ (π β π΄ β β*) |
Ref | Expression |
---|---|
smfpimne | β’ (π β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimne.p | . . 3 β’ β²π₯π | |
2 | smfpimne.s | . . . . . 6 β’ (π β π β SAlg) | |
3 | smfpimne.f | . . . . . 6 β’ (π β πΉ β (SMblFnβπ)) | |
4 | smfpimne.d | . . . . . 6 β’ π· = dom πΉ | |
5 | 2, 3, 4 | smff 46167 | . . . . 5 β’ (π β πΉ:π·βΆβ) |
6 | 5 | ffvelcdmda 7099 | . . . 4 β’ ((π β§ π₯ β π·) β (πΉβπ₯) β β) |
7 | 6 | rexrd 11304 | . . 3 β’ ((π β§ π₯ β π·) β (πΉβπ₯) β β*) |
8 | smfpimne.a | . . . 4 β’ (π β π΄ β β*) | |
9 | 8 | adantr 479 | . . 3 β’ ((π β§ π₯ β π·) β π΄ β β*) |
10 | 1, 7, 9 | pimxrneun 44918 | . 2 β’ (π β {π₯ β π· β£ (πΉβπ₯) β π΄} = ({π₯ β π· β£ (πΉβπ₯) < π΄} βͺ {π₯ β π· β£ π΄ < (πΉβπ₯)})) |
11 | 2, 3, 4 | smfdmss 46168 | . . . . 5 β’ (π β π· β βͺ π) |
12 | 2, 11 | subsaluni 45795 | . . . 4 β’ (π β π· β (π βΎt π·)) |
13 | eqid 2728 | . . . 4 β’ (π βΎt π·) = (π βΎt π·) | |
14 | 2, 12, 13 | subsalsal 45794 | . . 3 β’ (π β (π βΎt π·) β SAlg) |
15 | smfpimne.x | . . . 4 β’ β²π₯πΉ | |
16 | 15, 2, 3, 4, 8 | smfpimltxr 46182 | . . 3 β’ (π β {π₯ β π· β£ (πΉβπ₯) < π΄} β (π βΎt π·)) |
17 | 15, 2, 3, 4, 8 | smfpimgtxr 46215 | . . 3 β’ (π β {π₯ β π· β£ π΄ < (πΉβπ₯)} β (π βΎt π·)) |
18 | 14, 16, 17 | saluncld 45783 | . 2 β’ (π β ({π₯ β π· β£ (πΉβπ₯) < π΄} βͺ {π₯ β π· β£ π΄ < (πΉβπ₯)}) β (π βΎt π·)) |
19 | 10, 18 | eqeltrd 2829 | 1 β’ (π β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β²wnf 1777 β wcel 2098 β²wnfc 2879 β wne 2937 {crab 3430 βͺ cun 3947 class class class wbr 5152 dom cdm 5682 βcfv 6553 (class class class)co 7426 βcr 11147 β*cxr 11287 < clt 11288 βΎt crest 17411 SAlgcsalg 45743 SMblFncsmblfn 46130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-inf2 9674 ax-cc 10468 ax-ac2 10496 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-pm 8856 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-sup 9475 df-inf 9476 df-card 9972 df-acn 9975 df-ac 10149 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-n0 12513 df-z 12599 df-uz 12863 df-q 12973 df-rp 13017 df-ioo 13370 df-ico 13372 df-fl 13799 df-rest 17413 df-salg 45744 df-smblfn 46131 |
This theorem is referenced by: smfpimne2 46275 |
Copyright terms: Public domain | W3C validator |