![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimne | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value in the extended reals is in the subspace of sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smfpimne.p | ⊢ Ⅎ𝑥𝜑 |
smfpimne.x | ⊢ Ⅎ𝑥𝐹 |
smfpimne.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimne.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpimne.d | ⊢ 𝐷 = dom 𝐹 |
smfpimne.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimne | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimne.p | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | smfpimne.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | smfpimne.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
4 | smfpimne.d | . . . . . 6 ⊢ 𝐷 = dom 𝐹 | |
5 | 2, 3, 4 | smff 46371 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
6 | 5 | ffvelcdmda 7100 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
7 | 6 | rexrd 11316 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ*) |
8 | smfpimne.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
9 | 8 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐴 ∈ ℝ*) |
10 | 1, 7, 9 | pimxrneun 45122 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} = ({𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∪ {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)})) |
11 | 2, 3, 4 | smfdmss 46372 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
12 | 2, 11 | subsaluni 45999 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
13 | eqid 2726 | . . . 4 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
14 | 2, 12, 13 | subsalsal 45998 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
15 | smfpimne.x | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
16 | 15, 2, 3, 4, 8 | smfpimltxr 46386 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
17 | 15, 2, 3, 4, 8 | smfpimgtxr 46419 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
18 | 14, 16, 17 | saluncld 45987 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∪ {𝑥 ∈ 𝐷 ∣ 𝐴 < (𝐹‘𝑥)}) ∈ (𝑆 ↾t 𝐷)) |
19 | 10, 18 | eqeltrd 2826 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2876 ≠ wne 2930 {crab 3419 ∪ cun 3945 class class class wbr 5155 dom cdm 5684 ‘cfv 6556 (class class class)co 7426 ℝcr 11159 ℝ*cxr 11299 < clt 11300 ↾t crest 17437 SAlgcsalg 45947 SMblFncsmblfn 46334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-inf2 9686 ax-cc 10480 ax-ac2 10508 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 ax-pre-sup 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-iin 5006 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-se 5640 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-isom 6565 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-2o 8499 df-er 8736 df-map 8859 df-pm 8860 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-sup 9487 df-inf 9488 df-card 9984 df-acn 9987 df-ac 10161 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-div 11924 df-nn 12267 df-n0 12527 df-z 12613 df-uz 12877 df-q 12987 df-rp 13031 df-ioo 13384 df-ico 13386 df-fl 13814 df-rest 17439 df-salg 45948 df-smblfn 46335 |
This theorem is referenced by: smfpimne2 46479 |
Copyright terms: Public domain | W3C validator |