| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > readdsub | Structured version Visualization version GIF version | ||
| Description: Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.) |
| Ref | Expression |
|---|---|
| readdsub | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
| 2 | readdcl 11100 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 3 | 2 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| 4 | repncan3 42553 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐴 + 𝐵)) | |
| 5 | 1, 3, 4 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐴 + 𝐵)) |
| 6 | repncan3 42553 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 + (𝐴 −ℝ 𝐶)) = 𝐴) | |
| 7 | 6 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐴 −ℝ 𝐶)) = 𝐴) |
| 8 | 7 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐴 −ℝ 𝐶)) = 𝐴) |
| 9 | 8 | oveq1d 7370 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + (𝐴 −ℝ 𝐶)) + 𝐵) = (𝐴 + 𝐵)) |
| 10 | 1 | recnd 11151 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
| 11 | rersubcl 42548 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 −ℝ 𝐶) ∈ ℝ) | |
| 12 | 11 | 3adant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 −ℝ 𝐶) ∈ ℝ) |
| 13 | 12 | recnd 11151 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 −ℝ 𝐶) ∈ ℂ) |
| 14 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 15 | 14 | recnd 11151 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
| 16 | 10, 13, 15 | addassd 11145 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + (𝐴 −ℝ 𝐶)) + 𝐵) = (𝐶 + ((𝐴 −ℝ 𝐶) + 𝐵))) |
| 17 | 5, 9, 16 | 3eqtr2d 2774 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐶) + 𝐵))) |
| 18 | rersubcl 42548 | . . . 4 ⊢ (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) ∈ ℝ) | |
| 19 | 3, 1, 18 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) ∈ ℝ) |
| 20 | 12, 14 | readdcld 11152 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) + 𝐵) ∈ ℝ) |
| 21 | readdcan 11298 | . . 3 ⊢ ((((𝐴 + 𝐵) −ℝ 𝐶) ∈ ℝ ∧ ((𝐴 −ℝ 𝐶) + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐶) + 𝐵)) ↔ ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵))) | |
| 22 | 19, 20, 1, 21 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐶) + 𝐵)) ↔ ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵))) |
| 23 | 17, 22 | mpbid 232 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℝcr 11016 + caddc 11020 −ℝ cresub 42535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-addrcl 11078 ax-addass 11082 ax-rnegex 11088 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-resub 42536 |
| This theorem is referenced by: renpncan3 42561 resubidaddlid 42565 renegmulnnass 42635 |
| Copyright terms: Public domain | W3C validator |