Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readdsub Structured version   Visualization version   GIF version

Theorem readdsub 41560
Description: Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.)
Assertion
Ref Expression
readdsub ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 𝐶) + 𝐵))

Proof of Theorem readdsub
StepHypRef Expression
1 simp3 1137 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
2 readdcl 11197 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
323adant3 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
4 repncan3 41559 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝐶 + ((𝐴 + 𝐵) − 𝐶)) = (𝐴 + 𝐵))
51, 3, 4syl2anc 583 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + ((𝐴 + 𝐵) − 𝐶)) = (𝐴 + 𝐵))
6 repncan3 41559 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 + (𝐴 𝐶)) = 𝐴)
76ancoms 458 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐴 𝐶)) = 𝐴)
873adant2 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐴 𝐶)) = 𝐴)
98oveq1d 7427 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + (𝐴 𝐶)) + 𝐵) = (𝐴 + 𝐵))
101recnd 11247 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
11 rersubcl 41554 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 𝐶) ∈ ℝ)
12113adant2 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 𝐶) ∈ ℝ)
1312recnd 11247 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 𝐶) ∈ ℂ)
14 simp2 1136 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
1514recnd 11247 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
1610, 13, 15addassd 11241 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + (𝐴 𝐶)) + 𝐵) = (𝐶 + ((𝐴 𝐶) + 𝐵)))
175, 9, 163eqtr2d 2777 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + ((𝐴 + 𝐵) − 𝐶)) = (𝐶 + ((𝐴 𝐶) + 𝐵)))
18 rersubcl 41554 . . . 4 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) − 𝐶) ∈ ℝ)
193, 1, 18syl2anc 583 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) − 𝐶) ∈ ℝ)
2012, 14readdcld 11248 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 𝐶) + 𝐵) ∈ ℝ)
21 readdcan 11393 . . 3 ((((𝐴 + 𝐵) − 𝐶) ∈ ℝ ∧ ((𝐴 𝐶) + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + ((𝐴 + 𝐵) − 𝐶)) = (𝐶 + ((𝐴 𝐶) + 𝐵)) ↔ ((𝐴 + 𝐵) − 𝐶) = ((𝐴 𝐶) + 𝐵)))
2219, 20, 1, 21syl3anc 1370 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + ((𝐴 + 𝐵) − 𝐶)) = (𝐶 + ((𝐴 𝐶) + 𝐵)) ↔ ((𝐴 + 𝐵) − 𝐶) = ((𝐴 𝐶) + 𝐵)))
2317, 22mpbid 231 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 𝐶) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1540  wcel 2105  (class class class)co 7412  cr 11113   + caddc 11117   cresub 41541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11171  ax-addrcl 11175  ax-addass 11179  ax-rnegex 11185  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-ltxr 11258  df-resub 41542
This theorem is referenced by:  renpncan3  41567  resubidaddlid  41571  renegmulnnass  41629
  Copyright terms: Public domain W3C validator