![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > readdsub | Structured version Visualization version GIF version |
Description: Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.) |
Ref | Expression |
---|---|
readdsub | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1118 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
2 | readdcl 10410 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
3 | 2 | 3adant3 1112 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
4 | repncan3 38591 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐴 + 𝐵)) | |
5 | 1, 3, 4 | syl2anc 576 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐴 + 𝐵)) |
6 | repncan3 38591 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 + (𝐴 −ℝ 𝐶)) = 𝐴) | |
7 | 6 | ancoms 451 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐴 −ℝ 𝐶)) = 𝐴) |
8 | 7 | 3adant2 1111 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + (𝐴 −ℝ 𝐶)) = 𝐴) |
9 | 8 | oveq1d 6985 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + (𝐴 −ℝ 𝐶)) + 𝐵) = (𝐴 + 𝐵)) |
10 | 1 | recnd 10460 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
11 | rersubcl 38586 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 −ℝ 𝐶) ∈ ℝ) | |
12 | 11 | 3adant2 1111 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 −ℝ 𝐶) ∈ ℝ) |
13 | 12 | recnd 10460 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 −ℝ 𝐶) ∈ ℂ) |
14 | simp2 1117 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) | |
15 | 14 | recnd 10460 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
16 | 10, 13, 15 | addassd 10454 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + (𝐴 −ℝ 𝐶)) + 𝐵) = (𝐶 + ((𝐴 −ℝ 𝐶) + 𝐵))) |
17 | 5, 9, 16 | 3eqtr2d 2814 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐶) + 𝐵))) |
18 | rersubcl 38586 | . . . 4 ⊢ (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) ∈ ℝ) | |
19 | 3, 1, 18 | syl2anc 576 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) ∈ ℝ) |
20 | 12, 14 | readdcld 10461 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) + 𝐵) ∈ ℝ) |
21 | readdcan 10606 | . . 3 ⊢ ((((𝐴 + 𝐵) −ℝ 𝐶) ∈ ℝ ∧ ((𝐴 −ℝ 𝐶) + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐶) + 𝐵)) ↔ ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵))) | |
22 | 19, 20, 1, 21 | syl3anc 1351 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + ((𝐴 + 𝐵) −ℝ 𝐶)) = (𝐶 + ((𝐴 −ℝ 𝐶) + 𝐵)) ↔ ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵))) |
23 | 17, 22 | mpbid 224 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 (class class class)co 6970 ℝcr 10326 + caddc 10330 −ℝ cresub 38572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-resscn 10384 ax-addrcl 10388 ax-addass 10392 ax-rnegex 10398 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-po 5319 df-so 5320 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-ltxr 10471 df-resub 38573 |
This theorem is referenced by: renpncan3 38597 resubidaddid1 38601 |
Copyright terms: Public domain | W3C validator |