Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptssfisupp | Structured version Visualization version GIF version |
Description: The restriction of a mapping function has finite support if that function has finite support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
Ref | Expression |
---|---|
fmptssfisupp.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) finSupp 𝑍) |
fmptssfisupp.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
fmptssfisupp.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fmptssfisupp | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptssfisupp.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
2 | 1 | resmptd 5951 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
3 | fmptssfisupp.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) finSupp 𝑍) | |
4 | fmptssfisupp.3 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
5 | 3, 4 | fsuppres 9181 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) finSupp 𝑍) |
6 | 2, 5 | eqbrtrrd 5101 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2101 ⊆ wss 3889 class class class wbr 5077 ↦ cmpt 5160 ↾ cres 5593 finSupp cfsupp 9156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-supp 7998 df-1o 8317 df-en 8754 df-fin 8757 df-fsupp 9157 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |