![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegid | Structured version Visualization version GIF version |
Description: Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023.) |
Ref | Expression |
---|---|
renegid | ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . 2 ⊢ (0 −ℝ 𝐴) = (0 −ℝ 𝐴) | |
2 | rernegcl 40817 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
3 | renegadd 40818 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℝ) → ((0 −ℝ 𝐴) = (0 −ℝ 𝐴) ↔ (𝐴 + (0 −ℝ 𝐴)) = 0)) | |
4 | 2, 3 | mpdan 685 | . 2 ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) = (0 −ℝ 𝐴) ↔ (𝐴 + (0 −ℝ 𝐴)) = 0)) |
5 | 1, 4 | mpbii 232 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + (0 −ℝ 𝐴)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 (class class class)co 7356 ℝcr 11049 0cc0 11050 + caddc 11053 −ℝ cresub 40811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7671 ax-resscn 11107 ax-addrcl 11111 ax-rnegex 11121 ax-pre-lttri 11124 ax-pre-lttrn 11125 ax-pre-ltadd 11126 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-po 5545 df-so 5546 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7312 df-ov 7359 df-oprab 7360 df-mpo 7361 df-er 8647 df-en 8883 df-dom 8884 df-sdom 8885 df-pnf 11190 df-mnf 11191 df-ltxr 11193 df-resub 40812 |
This theorem is referenced by: reneg0addid2 40820 resubeulem1 40821 resubeulem2 40822 renegneg 40857 readdcan2 40858 renegid2 40859 sn-negex12 40862 ipiiie0 40883 sn-0tie0 40885 cnreeu 40914 |
Copyright terms: Public domain | W3C validator |