Step | Hyp | Ref
| Expression |
1 | | hdmapglem7.x |
. . . 4
β’ (π β π β π) |
2 | | hdmapglem7.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
3 | | hdmapglem7.o |
. . . . . 6
β’ π = ((ocHβπΎ)βπ) |
4 | | hdmapglem7.u |
. . . . . 6
β’ π = ((DVecHβπΎ)βπ) |
5 | | hdmapglem7.v |
. . . . . 6
β’ π = (Baseβπ) |
6 | | eqid 2732 |
. . . . . 6
β’
(LSubSpβπ) =
(LSubSpβπ) |
7 | | hdmapglem7.a |
. . . . . 6
β’ β =
(LSSumβπ) |
8 | | hdmapglem7.k |
. . . . . 6
β’ (π β (πΎ β HL β§ π β π»)) |
9 | 2, 4, 8 | dvhlmod 39969 |
. . . . . . 7
β’ (π β π β LMod) |
10 | | eqid 2732 |
. . . . . . . . 9
β’
(BaseβπΎ) =
(BaseβπΎ) |
11 | | eqid 2732 |
. . . . . . . . 9
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
12 | | eqid 2732 |
. . . . . . . . 9
β’
(0gβπ) = (0gβπ) |
13 | | hdmapglem7.e |
. . . . . . . . 9
β’ πΈ = β¨( I βΎ
(BaseβπΎ)), ( I
βΎ ((LTrnβπΎ)βπ))β© |
14 | 2, 10, 11, 4, 5, 12, 13, 8 | dvheveccl 39971 |
. . . . . . . 8
β’ (π β πΈ β (π β {(0gβπ)})) |
15 | 14 | eldifad 3959 |
. . . . . . 7
β’ (π β πΈ β π) |
16 | | hdmapglem7.n |
. . . . . . . 8
β’ π = (LSpanβπ) |
17 | 5, 6, 16 | lspsncl 20580 |
. . . . . . 7
β’ ((π β LMod β§ πΈ β π) β (πβ{πΈ}) β (LSubSpβπ)) |
18 | 9, 15, 17 | syl2anc 584 |
. . . . . 6
β’ (π β (πβ{πΈ}) β (LSubSpβπ)) |
19 | 15 | snssd 4811 |
. . . . . . . . 9
β’ (π β {πΈ} β π) |
20 | 2, 4, 3, 5, 16, 8,
19 | dochocsp 40238 |
. . . . . . . 8
β’ (π β (πβ(πβ{πΈ})) = (πβ{πΈ})) |
21 | 20 | fveq2d 6892 |
. . . . . . 7
β’ (π β (πβ(πβ(πβ{πΈ}))) = (πβ(πβ{πΈ}))) |
22 | 2, 4, 3, 5, 16, 8,
15 | dochocsn 40240 |
. . . . . . 7
β’ (π β (πβ(πβ{πΈ})) = (πβ{πΈ})) |
23 | 21, 22 | eqtrd 2772 |
. . . . . 6
β’ (π β (πβ(πβ(πβ{πΈ}))) = (πβ{πΈ})) |
24 | 2, 3, 4, 5, 6, 7, 8, 18, 23 | dochexmid 40327 |
. . . . 5
β’ (π β ((πβ{πΈ}) β (πβ(πβ{πΈ}))) = π) |
25 | 20 | oveq2d 7421 |
. . . . 5
β’ (π β ((πβ{πΈ}) β (πβ(πβ{πΈ}))) = ((πβ{πΈ}) β (πβ{πΈ}))) |
26 | 24, 25 | eqtr3d 2774 |
. . . 4
β’ (π β π = ((πβ{πΈ}) β (πβ{πΈ}))) |
27 | 1, 26 | eleqtrd 2835 |
. . 3
β’ (π β π β ((πβ{πΈ}) β (πβ{πΈ}))) |
28 | 6 | lsssssubg 20561 |
. . . . . 6
β’ (π β LMod β
(LSubSpβπ) β
(SubGrpβπ)) |
29 | 9, 28 | syl 17 |
. . . . 5
β’ (π β (LSubSpβπ) β (SubGrpβπ)) |
30 | 29, 18 | sseldd 3982 |
. . . 4
β’ (π β (πβ{πΈ}) β (SubGrpβπ)) |
31 | 2, 4, 5, 6, 3 | dochlss 40213 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ {πΈ} β π) β (πβ{πΈ}) β (LSubSpβπ)) |
32 | 8, 19, 31 | syl2anc 584 |
. . . . 5
β’ (π β (πβ{πΈ}) β (LSubSpβπ)) |
33 | 29, 32 | sseldd 3982 |
. . . 4
β’ (π β (πβ{πΈ}) β (SubGrpβπ)) |
34 | | hdmapglem7.p |
. . . . 5
β’ + =
(+gβπ) |
35 | 34, 7 | lsmelval 19511 |
. . . 4
β’ (((πβ{πΈ}) β (SubGrpβπ) β§ (πβ{πΈ}) β (SubGrpβπ)) β (π β ((πβ{πΈ}) β (πβ{πΈ})) β βπ β (πβ{πΈ})βπ’ β (πβ{πΈ})π = (π + π’))) |
36 | 30, 33, 35 | syl2anc 584 |
. . 3
β’ (π β (π β ((πβ{πΈ}) β (πβ{πΈ})) β βπ β (πβ{πΈ})βπ’ β (πβ{πΈ})π = (π + π’))) |
37 | 27, 36 | mpbid 231 |
. 2
β’ (π β βπ β (πβ{πΈ})βπ’ β (πβ{πΈ})π = (π + π’)) |
38 | | rexcom 3287 |
. . 3
β’
(βπ β
(πβ{πΈ})βπ’ β (πβ{πΈ})π = (π + π’) β βπ’ β (πβ{πΈ})βπ β (πβ{πΈ})π = (π + π’)) |
39 | | df-rex 3071 |
. . . . 5
β’
(βπ β
(πβ{πΈ})π = (π + π’) β βπ(π β (πβ{πΈ}) β§ π = (π + π’))) |
40 | | hdmapglem7.r |
. . . . . . . . . . 11
β’ π
= (Scalarβπ) |
41 | | hdmapglem7.b |
. . . . . . . . . . 11
β’ π΅ = (Baseβπ
) |
42 | | hdmapglem7.q |
. . . . . . . . . . 11
β’ Β· = (
Β·π βπ) |
43 | 40, 41, 5, 42, 16 | lspsnel 20606 |
. . . . . . . . . 10
β’ ((π β LMod β§ πΈ β π) β (π β (πβ{πΈ}) β βπ β π΅ π = (π Β· πΈ))) |
44 | 9, 15, 43 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (π β (πβ{πΈ}) β βπ β π΅ π = (π Β· πΈ))) |
45 | 44 | anbi1d 630 |
. . . . . . . 8
β’ (π β ((π β (πβ{πΈ}) β§ π = (π + π’)) β (βπ β π΅ π = (π Β· πΈ) β§ π = (π + π’)))) |
46 | | r19.41v 3188 |
. . . . . . . 8
β’
(βπ β
π΅ (π = (π Β· πΈ) β§ π = (π + π’)) β (βπ β π΅ π = (π Β· πΈ) β§ π = (π + π’))) |
47 | 45, 46 | bitr4di 288 |
. . . . . . 7
β’ (π β ((π β (πβ{πΈ}) β§ π = (π + π’)) β βπ β π΅ (π = (π Β· πΈ) β§ π = (π + π’)))) |
48 | 47 | exbidv 1924 |
. . . . . 6
β’ (π β (βπ(π β (πβ{πΈ}) β§ π = (π + π’)) β βπβπ β π΅ (π = (π Β· πΈ) β§ π = (π + π’)))) |
49 | | rexcom4 3285 |
. . . . . . 7
β’
(βπ β
π΅ βπ(π = (π Β· πΈ) β§ π = (π + π’)) β βπβπ β π΅ (π = (π Β· πΈ) β§ π = (π + π’))) |
50 | | ovex 7438 |
. . . . . . . . 9
β’ (π Β· πΈ) β V |
51 | | oveq1 7412 |
. . . . . . . . . 10
β’ (π = (π Β· πΈ) β (π + π’) = ((π Β· πΈ) + π’)) |
52 | 51 | eqeq2d 2743 |
. . . . . . . . 9
β’ (π = (π Β· πΈ) β (π = (π + π’) β π = ((π Β· πΈ) + π’))) |
53 | 50, 52 | ceqsexv 3525 |
. . . . . . . 8
β’
(βπ(π = (π Β· πΈ) β§ π = (π + π’)) β π = ((π Β· πΈ) + π’)) |
54 | 53 | rexbii 3094 |
. . . . . . 7
β’
(βπ β
π΅ βπ(π = (π Β· πΈ) β§ π = (π + π’)) β βπ β π΅ π = ((π Β· πΈ) + π’)) |
55 | 49, 54 | bitr3i 276 |
. . . . . 6
β’
(βπβπ β π΅ (π = (π Β· πΈ) β§ π = (π + π’)) β βπ β π΅ π = ((π Β· πΈ) + π’)) |
56 | 48, 55 | bitrdi 286 |
. . . . 5
β’ (π β (βπ(π β (πβ{πΈ}) β§ π = (π + π’)) β βπ β π΅ π = ((π Β· πΈ) + π’))) |
57 | 39, 56 | bitrid 282 |
. . . 4
β’ (π β (βπ β (πβ{πΈ})π = (π + π’) β βπ β π΅ π = ((π Β· πΈ) + π’))) |
58 | 57 | rexbidv 3178 |
. . 3
β’ (π β (βπ’ β (πβ{πΈ})βπ β (πβ{πΈ})π = (π + π’) β βπ’ β (πβ{πΈ})βπ β π΅ π = ((π Β· πΈ) + π’))) |
59 | 38, 58 | bitrid 282 |
. 2
β’ (π β (βπ β (πβ{πΈ})βπ’ β (πβ{πΈ})π = (π + π’) β βπ’ β (πβ{πΈ})βπ β π΅ π = ((π Β· πΈ) + π’))) |
60 | 37, 59 | mpbid 231 |
1
β’ (π β βπ’ β (πβ{πΈ})βπ β π΅ π = ((π Β· πΈ) + π’)) |