| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapglem7a | Structured version Visualization version GIF version | ||
| Description: Lemma for hdmapg 41954. (Contributed by NM, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmapglem7.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapglem7.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
| hdmapglem7.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hdmapglem7.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapglem7.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapglem7.p | ⊢ + = (+g‘𝑈) |
| hdmapglem7.q | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmapglem7.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmapglem7.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmapglem7.a | ⊢ ⊕ = (LSSum‘𝑈) |
| hdmapglem7.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmapglem7.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapglem7.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| hdmapglem7a | ⊢ (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmapglem7.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | hdmapglem7.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | hdmapglem7.o | . . . . . 6 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 4 | hdmapglem7.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | hdmapglem7.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
| 6 | eqid 2736 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 7 | hdmapglem7.a | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑈) | |
| 8 | hdmapglem7.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | 2, 4, 8 | dvhlmod 41134 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 10 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 11 | eqid 2736 | . . . . . . . . 9 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 12 | eqid 2736 | . . . . . . . . 9 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 13 | hdmapglem7.e | . . . . . . . . 9 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 14 | 2, 10, 11, 4, 5, 12, 13, 8 | dvheveccl 41136 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 15 | 14 | eldifad 3943 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 16 | hdmapglem7.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 17 | 5, 6, 16 | lspsncl 20939 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 18 | 9, 15, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 19 | 15 | snssd 4790 | . . . . . . . . 9 ⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
| 20 | 2, 4, 3, 5, 16, 8, 19 | dochocsp 41403 | . . . . . . . 8 ⊢ (𝜑 → (𝑂‘(𝑁‘{𝐸})) = (𝑂‘{𝐸})) |
| 21 | 20 | fveq2d 6885 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘(𝑂‘(𝑁‘{𝐸}))) = (𝑂‘(𝑂‘{𝐸}))) |
| 22 | 2, 4, 3, 5, 16, 8, 15 | dochocsn 41405 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘(𝑂‘{𝐸})) = (𝑁‘{𝐸})) |
| 23 | 21, 22 | eqtrd 2771 | . . . . . 6 ⊢ (𝜑 → (𝑂‘(𝑂‘(𝑁‘{𝐸}))) = (𝑁‘{𝐸})) |
| 24 | 2, 3, 4, 5, 6, 7, 8, 18, 23 | dochexmid 41492 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝐸}) ⊕ (𝑂‘(𝑁‘{𝐸}))) = 𝑉) |
| 25 | 20 | oveq2d 7426 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝐸}) ⊕ (𝑂‘(𝑁‘{𝐸}))) = ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸}))) |
| 26 | 24, 25 | eqtr3d 2773 | . . . 4 ⊢ (𝜑 → 𝑉 = ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸}))) |
| 27 | 1, 26 | eleqtrd 2837 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸}))) |
| 28 | 6 | lsssssubg 20920 | . . . . . 6 ⊢ (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
| 29 | 9, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
| 30 | 29, 18 | sseldd 3964 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝐸}) ∈ (SubGrp‘𝑈)) |
| 31 | 2, 4, 5, 6, 3 | dochlss 41378 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 32 | 8, 19, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
| 33 | 29, 32 | sseldd 3964 | . . . 4 ⊢ (𝜑 → (𝑂‘{𝐸}) ∈ (SubGrp‘𝑈)) |
| 34 | hdmapglem7.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
| 35 | 34, 7 | lsmelval 19635 | . . . 4 ⊢ (((𝑁‘{𝐸}) ∈ (SubGrp‘𝑈) ∧ (𝑂‘{𝐸}) ∈ (SubGrp‘𝑈)) → (𝑋 ∈ ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸})) ↔ ∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢))) |
| 36 | 30, 33, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 ∈ ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸})) ↔ ∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢))) |
| 37 | 27, 36 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢)) |
| 38 | rexcom 3275 | . . 3 ⊢ (∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑎 ∈ (𝑁‘{𝐸})𝑋 = (𝑎 + 𝑢)) | |
| 39 | df-rex 3062 | . . . . 5 ⊢ (∃𝑎 ∈ (𝑁‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑎(𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢))) | |
| 40 | hdmapglem7.r | . . . . . . . . . . 11 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 41 | hdmapglem7.b | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑅) | |
| 42 | hdmapglem7.q | . . . . . . . . . . 11 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 43 | 40, 41, 5, 42, 16 | ellspsn 20965 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉) → (𝑎 ∈ (𝑁‘{𝐸}) ↔ ∃𝑘 ∈ 𝐵 𝑎 = (𝑘 · 𝐸))) |
| 44 | 9, 15, 43 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑎 ∈ (𝑁‘{𝐸}) ↔ ∃𝑘 ∈ 𝐵 𝑎 = (𝑘 · 𝐸))) |
| 45 | 44 | anbi1d 631 | . . . . . . . 8 ⊢ (𝜑 → ((𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ (∃𝑘 ∈ 𝐵 𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)))) |
| 46 | r19.41v 3175 | . . . . . . . 8 ⊢ (∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ (∃𝑘 ∈ 𝐵 𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢))) | |
| 47 | 45, 46 | bitr4di 289 | . . . . . . 7 ⊢ (𝜑 → ((𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)))) |
| 48 | 47 | exbidv 1921 | . . . . . 6 ⊢ (𝜑 → (∃𝑎(𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑎∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)))) |
| 49 | rexcom4 3273 | . . . . . . 7 ⊢ (∃𝑘 ∈ 𝐵 ∃𝑎(𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑎∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢))) | |
| 50 | ovex 7443 | . . . . . . . . 9 ⊢ (𝑘 · 𝐸) ∈ V | |
| 51 | oveq1 7417 | . . . . . . . . . 10 ⊢ (𝑎 = (𝑘 · 𝐸) → (𝑎 + 𝑢) = ((𝑘 · 𝐸) + 𝑢)) | |
| 52 | 51 | eqeq2d 2747 | . . . . . . . . 9 ⊢ (𝑎 = (𝑘 · 𝐸) → (𝑋 = (𝑎 + 𝑢) ↔ 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
| 53 | 50, 52 | ceqsexv 3516 | . . . . . . . 8 ⊢ (∃𝑎(𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
| 54 | 53 | rexbii 3084 | . . . . . . 7 ⊢ (∃𝑘 ∈ 𝐵 ∃𝑎(𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
| 55 | 49, 54 | bitr3i 277 | . . . . . 6 ⊢ (∃𝑎∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
| 56 | 48, 55 | bitrdi 287 | . . . . 5 ⊢ (𝜑 → (∃𝑎(𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
| 57 | 39, 56 | bitrid 283 | . . . 4 ⊢ (𝜑 → (∃𝑎 ∈ (𝑁‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
| 58 | 57 | rexbidv 3165 | . . 3 ⊢ (𝜑 → (∃𝑢 ∈ (𝑂‘{𝐸})∃𝑎 ∈ (𝑁‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
| 59 | 38, 58 | bitrid 283 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
| 60 | 37, 59 | mpbid 232 | 1 ⊢ (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 {csn 4606 〈cop 4612 I cid 5552 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 ·𝑠 cvsca 17280 0gc0g 17458 SubGrpcsubg 19108 LSSumclsm 19620 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 HLchlt 39373 LHypclh 40008 LTrncltrn 40125 DVecHcdvh 41102 ocHcoch 41371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-riotaBAD 38976 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-0g 17460 df-mre 17603 df-mrc 17604 df-acs 17606 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-oppg 19334 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 df-lsatoms 38999 df-lcv 39042 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-llines 39522 df-lplanes 39523 df-lvols 39524 df-lines 39525 df-psubsp 39527 df-pmap 39528 df-padd 39820 df-lhyp 40012 df-laut 40013 df-ldil 40128 df-ltrn 40129 df-trl 40183 df-tgrp 40767 df-tendo 40779 df-edring 40781 df-dveca 41027 df-disoa 41053 df-dvech 41103 df-dib 41163 df-dic 41197 df-dih 41253 df-doch 41372 df-djh 41419 |
| This theorem is referenced by: hdmapglem7 41953 |
| Copyright terms: Public domain | W3C validator |