MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilim Structured version   Visualization version   GIF version

Theorem chtppilim 27406
Description: The θ function is asymptotic to π(𝑥)log(𝑥), so it is sufficient to prove θ(𝑥) / 𝑥𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtppilim (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1

Proof of Theorem chtppilim
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 12326 . . . . . . . . 9 (1 / 2) ∈ ℝ
2 1re 11104 . . . . . . . . . 10 1 ∈ ℝ
3 rpre 12891 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4 resubcl 11417 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 − 𝑦) ∈ ℝ)
52, 3, 4sylancr 587 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) ∈ ℝ)
6 ifcl 4519 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (1 − 𝑦) ∈ ℝ) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
71, 5, 6sylancr 587 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
8 0red 11107 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ∈ ℝ)
91a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ∈ ℝ)
10 halfgt0 12328 . . . . . . . . . 10 0 < (1 / 2)
1110a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 < (1 / 2))
12 max2 13078 . . . . . . . . . 10 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
135, 1, 12sylancl 586 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
148, 9, 7, 11, 13ltletrd 11265 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
157, 14elrpd 12923 . . . . . . 7 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ+)
1615rpsqrtcld 15311 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) ∈ ℝ+)
17 halflt1 12330 . . . . . . . . 9 (1 / 2) < 1
18 ltsubrp 12920 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (1 − 𝑦) < 1)
192, 18mpan 690 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) < 1)
20 breq1 5092 . . . . . . . . . 10 ((1 / 2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 / 2) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
21 breq1 5092 . . . . . . . . . 10 ((1 − 𝑦) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 − 𝑦) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
2220, 21ifboth 4513 . . . . . . . . 9 (((1 / 2) < 1 ∧ (1 − 𝑦) < 1) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2317, 19, 22sylancr 587 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2415rpge0d 12930 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
252a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 1 ∈ ℝ)
26 0le1 11632 . . . . . . . . . 10 0 ≤ 1
2726a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ 1)
287, 24, 25, 27sqrtltd 15327 . . . . . . . 8 (𝑦 ∈ ℝ+ → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1 ↔ (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1)))
2923, 28mpbid 232 . . . . . . 7 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1))
30 sqrt1 15170 . . . . . . 7 (√‘1) = 1
3129, 30breqtrdi 5130 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < 1)
3216, 31chtppilimlem2 27405 . . . . 5 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
335adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ∈ ℝ)
34 max1 13076 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
3533, 1, 34sylancl 586 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
367adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
37 2re 12191 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
38 elicopnf 13337 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
3937, 38ax-mp 5 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
4039simplbi 497 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
41 chtcl 27039 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
4240, 41syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ)
43 ppinncl 27104 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
4439, 43sylbi 217 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
4544nnrpd 12924 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
462a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
4737a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
48 1lt2 12283 . . . . . . . . . . . . . . . . 17 1 < 2
4948a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 < 2)
5039simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
5146, 47, 40, 49, 50ltletrd 11265 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
5240, 51rplogcld 26558 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
5345, 52rpmulcld 12942 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
5442, 53rerpdivcld 12957 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
5554adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
56 lelttr 11195 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5733, 36, 55, 56syl3anc 1373 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5835, 57mpand 695 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
597recnd 11132 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℂ)
6059sqsqrtd 15341 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6160adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6261oveq1d 7356 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) = (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))))
6362breq1d 5099 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
6442adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
6553rpregt0d 12932 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
6665adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
67 ltmuldiv 11987 . . . . . . . . . . 11 ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ (θ‘𝑥) ∈ ℝ ∧ (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥)))) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6836, 64, 66, 67syl3anc 1373 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6963, 68bitrd 279 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
70 0red 11107 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
71 2pos 12220 . . . . . . . . . . . . . . . . . . 19 0 < 2
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 < 2)
7370, 47, 40, 72, 50ltletrd 11265 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
7440, 73elrpd 12923 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
75 chtleppi 27141 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7674, 75syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7753rpcnd 12928 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
7877mulridd 11121 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) · 1) = ((π𝑥) · (log‘𝑥)))
7976, 78breqtrrd 5117 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1))
8042, 46, 53ledivmuld 12979 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1 ↔ (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1)))
8179, 80mpbird 257 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1)
8254, 46, 81abssuble0d 15334 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) = (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8382breq1d 5099 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
8483adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
852a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
863adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 𝑦 ∈ ℝ)
87 ltsub23 11589 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8885, 55, 86, 87syl3anc 1373 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8984, 88bitrd 279 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
9058, 69, 893imtr4d 294 . . . . . . . 8 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9190imim2d 57 . . . . . . 7 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → (𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9291ralimdva 3142 . . . . . 6 (𝑦 ∈ ℝ+ → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9392reximdv 3145 . . . . 5 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9432, 93mpd 15 . . . 4 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9594rgen 3047 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)
9654recnd 11132 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9796adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9897ralrimiva 3122 . . . 4 (⊤ → ∀𝑥 ∈ (2[,)+∞)((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9940ssriv 3936 . . . . 5 (2[,)+∞) ⊆ ℝ
10099a1i 11 . . . 4 (⊤ → (2[,)+∞) ⊆ ℝ)
101 1cnd 11099 . . . 4 (⊤ → 1 ∈ ℂ)
10298, 100, 101rlim2 15395 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
10395, 102mpbiri 258 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
104103mptru 1548 1 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2110  wral 3045  wrex 3054  wss 3900  ifcif 4473   class class class wbr 5089  cmpt 5170  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   · cmul 11003  +∞cpnf 11135   < clt 11138  cle 11139  cmin 11336   / cdiv 11766  cn 12117  2c2 12172  +crp 12882  [,)cico 13239  cexp 13960  csqrt 15132  abscabs 15133  𝑟 crli 15384  logclog 26483  θccht 27021  πcppi 27024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-o1 15389  df-lo1 15390  df-sum 15586  df-ef 15966  df-e 15967  df-sin 15968  df-cos 15969  df-pi 15971  df-dvds 16156  df-gcd 16398  df-prm 16575  df-pc 16741  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485  df-cxp 26486  df-cht 27027  df-ppi 27030
This theorem is referenced by:  chebbnd2  27408  chto1lb  27409  pnt  27545
  Copyright terms: Public domain W3C validator