MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilim Structured version   Visualization version   GIF version

Theorem chtppilim 25756
Description: The θ function is asymptotic to π(𝑥)log(𝑥), so it is sufficient to prove θ(𝑥) / 𝑥𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtppilim (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1

Proof of Theorem chtppilim
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 11664 . . . . . . . . 9 (1 / 2) ∈ ℝ
2 1re 10441 . . . . . . . . . 10 1 ∈ ℝ
3 rpre 12215 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4 resubcl 10753 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 − 𝑦) ∈ ℝ)
52, 3, 4sylancr 578 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) ∈ ℝ)
6 ifcl 4395 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (1 − 𝑦) ∈ ℝ) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
71, 5, 6sylancr 578 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
8 0red 10445 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ∈ ℝ)
91a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ∈ ℝ)
10 halfgt0 11666 . . . . . . . . . 10 0 < (1 / 2)
1110a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 < (1 / 2))
12 max2 12400 . . . . . . . . . 10 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
135, 1, 12sylancl 577 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
148, 9, 7, 11, 13ltletrd 10602 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
157, 14elrpd 12248 . . . . . . 7 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ+)
1615rpsqrtcld 14635 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) ∈ ℝ+)
17 halflt1 11668 . . . . . . . . 9 (1 / 2) < 1
18 ltsubrp 12245 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (1 − 𝑦) < 1)
192, 18mpan 677 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) < 1)
20 breq1 4933 . . . . . . . . . 10 ((1 / 2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 / 2) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
21 breq1 4933 . . . . . . . . . 10 ((1 − 𝑦) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 − 𝑦) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
2220, 21ifboth 4389 . . . . . . . . 9 (((1 / 2) < 1 ∧ (1 − 𝑦) < 1) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2317, 19, 22sylancr 578 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2415rpge0d 12255 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
252a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 1 ∈ ℝ)
26 0le1 10966 . . . . . . . . . 10 0 ≤ 1
2726a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ 1)
287, 24, 25, 27sqrtltd 14651 . . . . . . . 8 (𝑦 ∈ ℝ+ → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1 ↔ (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1)))
2923, 28mpbid 224 . . . . . . 7 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1))
30 sqrt1 14495 . . . . . . 7 (√‘1) = 1
3129, 30syl6breq 4971 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < 1)
3216, 31chtppilimlem2 25755 . . . . 5 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
335adantr 473 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ∈ ℝ)
34 max1 12398 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
3533, 1, 34sylancl 577 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
367adantr 473 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
37 2re 11517 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
38 elicopnf 12652 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
3937, 38ax-mp 5 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
4039simplbi 490 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
41 chtcl 25391 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
4240, 41syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ)
43 ppinncl 25456 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
4439, 43sylbi 209 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
4544nnrpd 12249 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
462a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
4737a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
48 1lt2 11621 . . . . . . . . . . . . . . . . 17 1 < 2
4948a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 < 2)
5039simprbi 489 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
5146, 47, 40, 49, 50ltletrd 10602 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
5240, 51rplogcld 24916 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
5345, 52rpmulcld 12267 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
5442, 53rerpdivcld 12282 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
5554adantl 474 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
56 lelttr 10533 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5733, 36, 55, 56syl3anc 1351 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5835, 57mpand 682 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
597recnd 10470 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℂ)
6059sqsqrtd 14663 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6160adantr 473 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6261oveq1d 6993 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) = (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))))
6362breq1d 4940 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
6442adantl 474 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
6553rpregt0d 12257 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
6665adantl 474 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
67 ltmuldiv 11316 . . . . . . . . . . 11 ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ (θ‘𝑥) ∈ ℝ ∧ (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥)))) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6836, 64, 66, 67syl3anc 1351 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6963, 68bitrd 271 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
70 0red 10445 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
71 2pos 11553 . . . . . . . . . . . . . . . . . . 19 0 < 2
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 < 2)
7370, 47, 40, 72, 50ltletrd 10602 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
7440, 73elrpd 12248 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
75 chtleppi 25491 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7674, 75syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7753rpcnd 12253 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
7877mulid1d 10459 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) · 1) = ((π𝑥) · (log‘𝑥)))
7976, 78breqtrrd 4958 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1))
8042, 46, 53ledivmuld 12304 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1 ↔ (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1)))
8179, 80mpbird 249 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1)
8254, 46, 81abssuble0d 14656 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) = (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8382breq1d 4940 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
8483adantl 474 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
852a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
863adantr 473 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 𝑦 ∈ ℝ)
87 ltsub23 10923 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8885, 55, 86, 87syl3anc 1351 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8984, 88bitrd 271 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
9058, 69, 893imtr4d 286 . . . . . . . 8 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9190imim2d 57 . . . . . . 7 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → (𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9291ralimdva 3127 . . . . . 6 (𝑦 ∈ ℝ+ → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9392reximdv 3218 . . . . 5 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9432, 93mpd 15 . . . 4 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9594rgen 3098 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)
9654recnd 10470 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9796adantl 474 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9897ralrimiva 3132 . . . 4 (⊤ → ∀𝑥 ∈ (2[,)+∞)((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9940ssriv 3864 . . . . 5 (2[,)+∞) ⊆ ℝ
10099a1i 11 . . . 4 (⊤ → (2[,)+∞) ⊆ ℝ)
101 1cnd 10436 . . . 4 (⊤ → 1 ∈ ℂ)
10298, 100, 101rlim2 14717 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
10395, 102mpbiri 250 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
104103mptru 1514 1 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wtru 1508  wcel 2050  wral 3088  wrex 3089  wss 3831  ifcif 4351   class class class wbr 4930  cmpt 5009  cfv 6190  (class class class)co 6978  cc 10335  cr 10336  0cc0 10337  1c1 10338   · cmul 10342  +∞cpnf 10473   < clt 10476  cle 10477  cmin 10672   / cdiv 11100  cn 11441  2c2 11498  +crp 12207  [,)cico 12559  cexp 13247  csqrt 14456  abscabs 14457  𝑟 crli 14706  logclog 24842  θccht 25373  πcppi 25376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-inf2 8900  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415  ax-addf 10416  ax-mulf 10417
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-pm 8211  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-fi 8672  df-sup 8703  df-inf 8704  df-oi 8771  df-dju 9126  df-card 9164  df-cda 9390  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-xnn0 11783  df-z 11797  df-dec 11915  df-uz 12062  df-q 12166  df-rp 12208  df-xneg 12327  df-xadd 12328  df-xmul 12329  df-ioo 12561  df-ioc 12562  df-ico 12563  df-icc 12564  df-fz 12712  df-fzo 12853  df-fl 12980  df-mod 13056  df-seq 13188  df-exp 13248  df-fac 13452  df-bc 13481  df-hash 13509  df-shft 14290  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-limsup 14692  df-clim 14709  df-rlim 14710  df-o1 14711  df-lo1 14712  df-sum 14907  df-ef 15284  df-e 15285  df-sin 15286  df-cos 15287  df-pi 15289  df-dvds 15471  df-gcd 15707  df-prm 15875  df-pc 16033  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-starv 16439  df-sca 16440  df-vsca 16441  df-ip 16442  df-tset 16443  df-ple 16444  df-ds 16446  df-unif 16447  df-hom 16448  df-cco 16449  df-rest 16555  df-topn 16556  df-0g 16574  df-gsum 16575  df-topgen 16576  df-pt 16577  df-prds 16580  df-xrs 16634  df-qtop 16639  df-imas 16640  df-xps 16642  df-mre 16718  df-mrc 16719  df-acs 16721  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-submnd 17807  df-mulg 18015  df-cntz 18221  df-cmn 18671  df-psmet 20242  df-xmet 20243  df-met 20244  df-bl 20245  df-mopn 20246  df-fbas 20247  df-fg 20248  df-cnfld 20251  df-top 21209  df-topon 21226  df-topsp 21248  df-bases 21261  df-cld 21334  df-ntr 21335  df-cls 21336  df-nei 21413  df-lp 21451  df-perf 21452  df-cn 21542  df-cnp 21543  df-haus 21630  df-tx 21877  df-hmeo 22070  df-fil 22161  df-fm 22253  df-flim 22254  df-flf 22255  df-xms 22636  df-ms 22637  df-tms 22638  df-cncf 23192  df-limc 24170  df-dv 24171  df-log 24844  df-cxp 24845  df-cht 25379  df-ppi 25382
This theorem is referenced by:  chebbnd2  25758  chto1lb  25759  pnt  25895
  Copyright terms: Public domain W3C validator