MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilim Structured version   Visualization version   GIF version

Theorem chtppilim 27402
Description: The θ function is asymptotic to π(𝑥)log(𝑥), so it is sufficient to prove θ(𝑥) / 𝑥𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chtppilim (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1

Proof of Theorem chtppilim
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 12355 . . . . . . . . 9 (1 / 2) ∈ ℝ
2 1re 11134 . . . . . . . . . 10 1 ∈ ℝ
3 rpre 12920 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4 resubcl 11446 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 − 𝑦) ∈ ℝ)
52, 3, 4sylancr 587 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) ∈ ℝ)
6 ifcl 4524 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ (1 − 𝑦) ∈ ℝ) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
71, 5, 6sylancr 587 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
8 0red 11137 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ∈ ℝ)
91a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ∈ ℝ)
10 halfgt0 12357 . . . . . . . . . 10 0 < (1 / 2)
1110a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 < (1 / 2))
12 max2 13107 . . . . . . . . . 10 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
135, 1, 12sylancl 586 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 2) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
148, 9, 7, 11, 13ltletrd 11294 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
157, 14elrpd 12952 . . . . . . 7 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ+)
1615rpsqrtcld 15337 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) ∈ ℝ+)
17 halflt1 12359 . . . . . . . . 9 (1 / 2) < 1
18 ltsubrp 12949 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (1 − 𝑦) < 1)
192, 18mpan 690 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 − 𝑦) < 1)
20 breq1 5098 . . . . . . . . . 10 ((1 / 2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 / 2) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
21 breq1 5098 . . . . . . . . . 10 ((1 − 𝑦) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) → ((1 − 𝑦) < 1 ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1))
2220, 21ifboth 4518 . . . . . . . . 9 (((1 / 2) < 1 ∧ (1 − 𝑦) < 1) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2317, 19, 22sylancr 587 . . . . . . . 8 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1)
2415rpge0d 12959 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
252a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 1 ∈ ℝ)
26 0le1 11661 . . . . . . . . . 10 0 ≤ 1
2726a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ+ → 0 ≤ 1)
287, 24, 25, 27sqrtltd 15353 . . . . . . . 8 (𝑦 ∈ ℝ+ → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < 1 ↔ (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1)))
2923, 28mpbid 232 . . . . . . 7 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < (√‘1))
30 sqrt1 15196 . . . . . . 7 (√‘1) = 1
3129, 30breqtrdi 5136 . . . . . 6 (𝑦 ∈ ℝ+ → (√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦))) < 1)
3216, 31chtppilimlem2 27401 . . . . 5 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
335adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ∈ ℝ)
34 max1 13105 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
3533, 1, 34sylancl 586 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
367adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ)
37 2re 12220 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
38 elicopnf 13366 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
3937, 38ax-mp 5 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
4039simplbi 497 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
41 chtcl 27035 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
4240, 41syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ∈ ℝ)
43 ppinncl 27100 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
4439, 43sylbi 217 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℕ)
4544nnrpd 12953 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (π𝑥) ∈ ℝ+)
462a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 ∈ ℝ)
4737a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
48 1lt2 12312 . . . . . . . . . . . . . . . . 17 1 < 2
4948a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 1 < 2)
5039simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
5146, 47, 40, 49, 50ltletrd 11294 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → 1 < 𝑥)
5240, 51rplogcld 26554 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (log‘𝑥) ∈ ℝ+)
5345, 52rpmulcld 12971 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℝ+)
5442, 53rerpdivcld 12986 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
5554adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ)
56 lelttr 11224 . . . . . . . . . . 11 (((1 − 𝑦) ∈ ℝ ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5733, 36, 55, 56syl3anc 1373 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((1 − 𝑦) ≤ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∧ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
5835, 57mpand 695 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) → (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
597recnd 11162 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℂ)
6059sqsqrtd 15367 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6160adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) = if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))
6261oveq1d 7368 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) = (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))))
6362breq1d 5105 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ (if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
6442adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
6553rpregt0d 12961 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
6665adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥))))
67 ltmuldiv 12016 . . . . . . . . . . 11 ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) ∈ ℝ ∧ (θ‘𝑥) ∈ ℝ ∧ (((π𝑥) · (log‘𝑥)) ∈ ℝ ∧ 0 < ((π𝑥) · (log‘𝑥)))) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6836, 64, 66, 67syl3anc 1373 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
6963, 68bitrd 279 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) ↔ if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
70 0red 11137 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
71 2pos 12249 . . . . . . . . . . . . . . . . . . 19 0 < 2
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (2[,)+∞) → 0 < 2)
7370, 47, 40, 72, 50ltletrd 11294 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
7440, 73elrpd 12952 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
75 chtleppi 27137 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7674, 75syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ ((π𝑥) · (log‘𝑥)))
7753rpcnd 12957 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (2[,)+∞) → ((π𝑥) · (log‘𝑥)) ∈ ℂ)
7877mulridd 11151 . . . . . . . . . . . . . . 15 (𝑥 ∈ (2[,)+∞) → (((π𝑥) · (log‘𝑥)) · 1) = ((π𝑥) · (log‘𝑥)))
7976, 78breqtrrd 5123 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1))
8042, 46, 53ledivmuld 13008 . . . . . . . . . . . . . 14 (𝑥 ∈ (2[,)+∞) → (((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1 ↔ (θ‘𝑥) ≤ (((π𝑥) · (log‘𝑥)) · 1)))
8179, 80mpbird 257 . . . . . . . . . . . . 13 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ≤ 1)
8254, 46, 81abssuble0d 15360 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) = (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8382breq1d 5105 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
8483adantl 481 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦))
852a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
863adantr 480 . . . . . . . . . . 11 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → 𝑦 ∈ ℝ)
87 ltsub23 11618 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8885, 55, 86, 87syl3anc 1373 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((1 − ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
8984, 88bitrd 279 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦 ↔ (1 − 𝑦) < ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))))
9058, 69, 893imtr4d 294 . . . . . . . 8 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥) → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9190imim2d 57 . . . . . . 7 ((𝑦 ∈ ℝ+𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → (𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9291ralimdva 3141 . . . . . 6 (𝑦 ∈ ℝ+ → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9392reximdv 3144 . . . . 5 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (((√‘if((1 − 𝑦) ≤ (1 / 2), (1 / 2), (1 − 𝑦)))↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
9432, 93mpd 15 . . . 4 (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦))
9594rgen 3046 . . 3 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)
9654recnd 11162 . . . . . 6 (𝑥 ∈ (2[,)+∞) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9796adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9897ralrimiva 3121 . . . 4 (⊤ → ∀𝑥 ∈ (2[,)+∞)((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) ∈ ℂ)
9940ssriv 3941 . . . . 5 (2[,)+∞) ⊆ ℝ
10099a1i 11 . . . 4 (⊤ → (2[,)+∞) ⊆ ℝ)
101 1cnd 11129 . . . 4 (⊤ → 1 ∈ ℂ)
10298, 100, 101rlim2 15421 . . 3 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((θ‘𝑥) / ((π𝑥) · (log‘𝑥))) − 1)) < 𝑦)))
10395, 102mpbiri 258 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1)
104103mptru 1547 1 (𝑥 ∈ (2[,)+∞) ↦ ((θ‘𝑥) / ((π𝑥) · (log‘𝑥)))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  wss 3905  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033  +∞cpnf 11165   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  +crp 12911  [,)cico 13268  cexp 13986  csqrt 15158  abscabs 15159  𝑟 crli 15410  logclog 26479  θccht 27017  πcppi 27020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-o1 15415  df-lo1 15416  df-sum 15612  df-ef 15992  df-e 15993  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cxp 26482  df-cht 27023  df-ppi 27026
This theorem is referenced by:  chebbnd2  27404  chto1lb  27405  pnt  27541
  Copyright terms: Public domain W3C validator