MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slemuld Structured version   Visualization version   GIF version

Theorem slemuld 28075
Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 7-Mar-2025.)
Hypotheses
Ref Expression
slemuld.1 (𝜑𝐴 No )
slemuld.2 (𝜑𝐵 No )
slemuld.3 (𝜑𝐶 No )
slemuld.4 (𝜑𝐷 No )
slemuld.5 (𝜑𝐴 ≤s 𝐵)
slemuld.6 (𝜑𝐶 ≤s 𝐷)
Assertion
Ref Expression
slemuld (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))

Proof of Theorem slemuld
StepHypRef Expression
1 slemuld.1 . . . . . . . 8 (𝜑𝐴 No )
2 slemuld.4 . . . . . . . 8 (𝜑𝐷 No )
31, 2mulscld 28072 . . . . . . 7 (𝜑 → (𝐴 ·s 𝐷) ∈ No )
4 slemuld.3 . . . . . . . 8 (𝜑𝐶 No )
51, 4mulscld 28072 . . . . . . 7 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
63, 5subscld 28001 . . . . . 6 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ∈ No )
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ∈ No )
8 slemuld.2 . . . . . . . 8 (𝜑𝐵 No )
98, 2mulscld 28072 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐷) ∈ No )
108, 4mulscld 28072 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
119, 10subscld 28001 . . . . . 6 (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No )
1211adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No )
131adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐴 No )
148adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐵 No )
154adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐶 No )
162adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐷 No )
17 simprl 770 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐴 <s 𝐵)
18 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐶 <s 𝐷)
1913, 14, 15, 16, 17, 18sltmuld 28074 . . . . 5 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
207, 12, 19sltled 27706 . . . 4 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
2120anassrs 467 . . 3 (((𝜑𝐴 <s 𝐵) ∧ 𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
22 0sno 27768 . . . . . . . 8 0s No
23 slerflex 27700 . . . . . . . 8 ( 0s No → 0s ≤s 0s )
2422, 23mp1i 13 . . . . . . 7 (𝜑 → 0s ≤s 0s )
25 subsid 28007 . . . . . . . 8 ((𝐴 ·s 𝐷) ∈ No → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) = 0s )
263, 25syl 17 . . . . . . 7 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) = 0s )
27 subsid 28007 . . . . . . . 8 ((𝐵 ·s 𝐷) ∈ No → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)) = 0s )
289, 27syl 17 . . . . . . 7 (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)) = 0s )
2924, 26, 283brtr4d 5123 . . . . . 6 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)))
30 oveq2 7354 . . . . . . . 8 (𝐶 = 𝐷 → (𝐴 ·s 𝐶) = (𝐴 ·s 𝐷))
3130oveq2d 7362 . . . . . . 7 (𝐶 = 𝐷 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) = ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)))
32 oveq2 7354 . . . . . . . 8 (𝐶 = 𝐷 → (𝐵 ·s 𝐶) = (𝐵 ·s 𝐷))
3332oveq2d 7362 . . . . . . 7 (𝐶 = 𝐷 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) = ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)))
3431, 33breq12d 5104 . . . . . 6 (𝐶 = 𝐷 → (((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ↔ ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷))))
3529, 34syl5ibrcom 247 . . . . 5 (𝜑 → (𝐶 = 𝐷 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
3635imp 406 . . . 4 ((𝜑𝐶 = 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
3736adantlr 715 . . 3 (((𝜑𝐴 <s 𝐵) ∧ 𝐶 = 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
38 slemuld.6 . . . . 5 (𝜑𝐶 ≤s 𝐷)
39 sleloe 27691 . . . . . 6 ((𝐶 No 𝐷 No ) → (𝐶 ≤s 𝐷 ↔ (𝐶 <s 𝐷𝐶 = 𝐷)))
404, 2, 39syl2anc 584 . . . . 5 (𝜑 → (𝐶 ≤s 𝐷 ↔ (𝐶 <s 𝐷𝐶 = 𝐷)))
4138, 40mpbid 232 . . . 4 (𝜑 → (𝐶 <s 𝐷𝐶 = 𝐷))
4241adantr 480 . . 3 ((𝜑𝐴 <s 𝐵) → (𝐶 <s 𝐷𝐶 = 𝐷))
4321, 37, 42mpjaodan 960 . 2 ((𝜑𝐴 <s 𝐵) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
44 slerflex 27700 . . . . 5 (((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
4511, 44syl 17 . . . 4 (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
46 oveq1 7353 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ·s 𝐷) = (𝐵 ·s 𝐷))
47 oveq1 7353 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶))
4846, 47oveq12d 7364 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) = ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
4948breq1d 5101 . . . 4 (𝐴 = 𝐵 → (((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ↔ ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
5045, 49syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 𝐵 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
5150imp 406 . 2 ((𝜑𝐴 = 𝐵) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
52 slemuld.5 . . 3 (𝜑𝐴 ≤s 𝐵)
53 sleloe 27691 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
541, 8, 53syl2anc 584 . . 3 (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
5552, 54mpbid 232 . 2 (𝜑 → (𝐴 <s 𝐵𝐴 = 𝐵))
5643, 51, 55mpjaodan 960 1 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111   class class class wbr 5091  (class class class)co 7346   No csur 27576   <s cslt 27577   ≤s csle 27681   0s c0s 27764   -s csubs 27960   ·s cmuls 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec 27879  df-norec2 27890  df-adds 27901  df-negs 27961  df-subs 27962  df-muls 28044
This theorem is referenced by:  mulsuniflem  28086
  Copyright terms: Public domain W3C validator