Proof of Theorem slemuld
| Step | Hyp | Ref
| Expression |
| 1 | | slemuld.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ No
) |
| 2 | | slemuld.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ No
) |
| 3 | 1, 2 | mulscld 28161 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ·s 𝐷) ∈ No
) |
| 4 | | slemuld.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ No
) |
| 5 | 1, 4 | mulscld 28161 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ·s 𝐶) ∈ No
) |
| 6 | 3, 5 | subscld 28093 |
. . . . . 6
⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ∈ No
) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ∈ No
) |
| 8 | | slemuld.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ No
) |
| 9 | 8, 2 | mulscld 28161 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ·s 𝐷) ∈ No
) |
| 10 | 8, 4 | mulscld 28161 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No
) |
| 11 | 9, 10 | subscld 28093 |
. . . . . 6
⊢ (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No
) |
| 12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No
) |
| 13 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → 𝐴 ∈ No
) |
| 14 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → 𝐵 ∈ No
) |
| 15 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → 𝐶 ∈ No
) |
| 16 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → 𝐷 ∈ No
) |
| 17 | | simprl 771 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → 𝐴 <s 𝐵) |
| 18 | | simprr 773 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → 𝐶 <s 𝐷) |
| 19 | 13, 14, 15, 16, 17, 18 | sltmuld 28163 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| 20 | 7, 12, 19 | sltled 27814 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| 21 | 20 | anassrs 467 |
. . 3
⊢ (((𝜑 ∧ 𝐴 <s 𝐵) ∧ 𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| 22 | | 0sno 27871 |
. . . . . . . 8
⊢
0s ∈ No |
| 23 | | slerflex 27808 |
. . . . . . . 8
⊢ (
0s ∈ No → 0s
≤s 0s ) |
| 24 | 22, 23 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → 0s ≤s
0s ) |
| 25 | | subsid 28099 |
. . . . . . . 8
⊢ ((𝐴 ·s 𝐷) ∈
No → ((𝐴
·s 𝐷)
-s (𝐴
·s 𝐷)) =
0s ) |
| 26 | 3, 25 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) = 0s ) |
| 27 | | subsid 28099 |
. . . . . . . 8
⊢ ((𝐵 ·s 𝐷) ∈
No → ((𝐵
·s 𝐷)
-s (𝐵
·s 𝐷)) =
0s ) |
| 28 | 9, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)) = 0s ) |
| 29 | 24, 26, 28 | 3brtr4d 5175 |
. . . . . 6
⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷))) |
| 30 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → (𝐴 ·s 𝐶) = (𝐴 ·s 𝐷)) |
| 31 | 30 | oveq2d 7447 |
. . . . . . 7
⊢ (𝐶 = 𝐷 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) = ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷))) |
| 32 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝐶 = 𝐷 → (𝐵 ·s 𝐶) = (𝐵 ·s 𝐷)) |
| 33 | 32 | oveq2d 7447 |
. . . . . . 7
⊢ (𝐶 = 𝐷 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) = ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷))) |
| 34 | 31, 33 | breq12d 5156 |
. . . . . 6
⊢ (𝐶 = 𝐷 → (((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ↔ ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)))) |
| 35 | 29, 34 | syl5ibrcom 247 |
. . . . 5
⊢ (𝜑 → (𝐶 = 𝐷 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))) |
| 36 | 35 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 = 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| 37 | 36 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ 𝐴 <s 𝐵) ∧ 𝐶 = 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| 38 | | slemuld.6 |
. . . . 5
⊢ (𝜑 → 𝐶 ≤s 𝐷) |
| 39 | | sleloe 27799 |
. . . . . 6
⊢ ((𝐶 ∈
No ∧ 𝐷 ∈
No ) → (𝐶 ≤s 𝐷 ↔ (𝐶 <s 𝐷 ∨ 𝐶 = 𝐷))) |
| 40 | 4, 2, 39 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐶 ≤s 𝐷 ↔ (𝐶 <s 𝐷 ∨ 𝐶 = 𝐷))) |
| 41 | 38, 40 | mpbid 232 |
. . . 4
⊢ (𝜑 → (𝐶 <s 𝐷 ∨ 𝐶 = 𝐷)) |
| 42 | 41 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → (𝐶 <s 𝐷 ∨ 𝐶 = 𝐷)) |
| 43 | 21, 37, 42 | mpjaodan 961 |
. 2
⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| 44 | | slerflex 27808 |
. . . . 5
⊢ (((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈
No → ((𝐵
·s 𝐷)
-s (𝐵
·s 𝐶))
≤s ((𝐵
·s 𝐷)
-s (𝐵
·s 𝐶))) |
| 45 | 11, 44 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| 46 | | oveq1 7438 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴 ·s 𝐷) = (𝐵 ·s 𝐷)) |
| 47 | | oveq1 7438 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶)) |
| 48 | 46, 47 | oveq12d 7449 |
. . . . 5
⊢ (𝐴 = 𝐵 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) = ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| 49 | 48 | breq1d 5153 |
. . . 4
⊢ (𝐴 = 𝐵 → (((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ↔ ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))) |
| 50 | 45, 49 | syl5ibrcom 247 |
. . 3
⊢ (𝜑 → (𝐴 = 𝐵 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))) |
| 51 | 50 | imp 406 |
. 2
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |
| 52 | | slemuld.5 |
. . 3
⊢ (𝜑 → 𝐴 ≤s 𝐵) |
| 53 | | sleloe 27799 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
| 54 | 1, 8, 53 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
| 55 | 52, 54 | mpbid 232 |
. 2
⊢ (𝜑 → (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵)) |
| 56 | 43, 51, 55 | mpjaodan 961 |
1
⊢ (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))) |