MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slemuld Structured version   Visualization version   GIF version

Theorem slemuld 28078
Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 7-Mar-2025.)
Hypotheses
Ref Expression
slemuld.1 (𝜑𝐴 No )
slemuld.2 (𝜑𝐵 No )
slemuld.3 (𝜑𝐶 No )
slemuld.4 (𝜑𝐷 No )
slemuld.5 (𝜑𝐴 ≤s 𝐵)
slemuld.6 (𝜑𝐶 ≤s 𝐷)
Assertion
Ref Expression
slemuld (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))

Proof of Theorem slemuld
StepHypRef Expression
1 slemuld.1 . . . . . . . 8 (𝜑𝐴 No )
2 slemuld.4 . . . . . . . 8 (𝜑𝐷 No )
31, 2mulscld 28075 . . . . . . 7 (𝜑 → (𝐴 ·s 𝐷) ∈ No )
4 slemuld.3 . . . . . . . 8 (𝜑𝐶 No )
51, 4mulscld 28075 . . . . . . 7 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
63, 5subscld 28004 . . . . . 6 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ∈ No )
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ∈ No )
8 slemuld.2 . . . . . . . 8 (𝜑𝐵 No )
98, 2mulscld 28075 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐷) ∈ No )
108, 4mulscld 28075 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
119, 10subscld 28004 . . . . . 6 (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No )
1211adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No )
131adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐴 No )
148adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐵 No )
154adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐶 No )
162adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐷 No )
17 simprl 770 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐴 <s 𝐵)
18 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐶 <s 𝐷)
1913, 14, 15, 16, 17, 18sltmuld 28077 . . . . 5 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
207, 12, 19sltled 27709 . . . 4 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
2120anassrs 467 . . 3 (((𝜑𝐴 <s 𝐵) ∧ 𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
22 0sno 27771 . . . . . . . 8 0s No
23 slerflex 27703 . . . . . . . 8 ( 0s No → 0s ≤s 0s )
2422, 23mp1i 13 . . . . . . 7 (𝜑 → 0s ≤s 0s )
25 subsid 28010 . . . . . . . 8 ((𝐴 ·s 𝐷) ∈ No → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) = 0s )
263, 25syl 17 . . . . . . 7 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) = 0s )
27 subsid 28010 . . . . . . . 8 ((𝐵 ·s 𝐷) ∈ No → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)) = 0s )
289, 27syl 17 . . . . . . 7 (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)) = 0s )
2924, 26, 283brtr4d 5125 . . . . . 6 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)))
30 oveq2 7360 . . . . . . . 8 (𝐶 = 𝐷 → (𝐴 ·s 𝐶) = (𝐴 ·s 𝐷))
3130oveq2d 7368 . . . . . . 7 (𝐶 = 𝐷 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) = ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)))
32 oveq2 7360 . . . . . . . 8 (𝐶 = 𝐷 → (𝐵 ·s 𝐶) = (𝐵 ·s 𝐷))
3332oveq2d 7368 . . . . . . 7 (𝐶 = 𝐷 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) = ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)))
3431, 33breq12d 5106 . . . . . 6 (𝐶 = 𝐷 → (((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ↔ ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷))))
3529, 34syl5ibrcom 247 . . . . 5 (𝜑 → (𝐶 = 𝐷 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
3635imp 406 . . . 4 ((𝜑𝐶 = 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
3736adantlr 715 . . 3 (((𝜑𝐴 <s 𝐵) ∧ 𝐶 = 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
38 slemuld.6 . . . . 5 (𝜑𝐶 ≤s 𝐷)
39 sleloe 27694 . . . . . 6 ((𝐶 No 𝐷 No ) → (𝐶 ≤s 𝐷 ↔ (𝐶 <s 𝐷𝐶 = 𝐷)))
404, 2, 39syl2anc 584 . . . . 5 (𝜑 → (𝐶 ≤s 𝐷 ↔ (𝐶 <s 𝐷𝐶 = 𝐷)))
4138, 40mpbid 232 . . . 4 (𝜑 → (𝐶 <s 𝐷𝐶 = 𝐷))
4241adantr 480 . . 3 ((𝜑𝐴 <s 𝐵) → (𝐶 <s 𝐷𝐶 = 𝐷))
4321, 37, 42mpjaodan 960 . 2 ((𝜑𝐴 <s 𝐵) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
44 slerflex 27703 . . . . 5 (((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
4511, 44syl 17 . . . 4 (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
46 oveq1 7359 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ·s 𝐷) = (𝐵 ·s 𝐷))
47 oveq1 7359 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶))
4846, 47oveq12d 7370 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) = ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
4948breq1d 5103 . . . 4 (𝐴 = 𝐵 → (((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ↔ ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
5045, 49syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 𝐵 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
5150imp 406 . 2 ((𝜑𝐴 = 𝐵) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
52 slemuld.5 . . 3 (𝜑𝐴 ≤s 𝐵)
53 sleloe 27694 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
541, 8, 53syl2anc 584 . . 3 (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
5552, 54mpbid 232 . 2 (𝜑 → (𝐴 <s 𝐵𝐴 = 𝐵))
5643, 51, 55mpjaodan 960 1 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113   class class class wbr 5093  (class class class)co 7352   No csur 27579   <s cslt 27580   ≤s csle 27684   0s c0s 27767   -s csubs 27963   ·s cmuls 28046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec 27882  df-norec2 27893  df-adds 27904  df-negs 27964  df-subs 27965  df-muls 28047
This theorem is referenced by:  mulsuniflem  28089
  Copyright terms: Public domain W3C validator