MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slemuld Structured version   Visualization version   GIF version

Theorem slemuld 28064
Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of [Conway] p. 19. (Contributed by Scott Fenton, 7-Mar-2025.)
Hypotheses
Ref Expression
slemuld.1 (𝜑𝐴 No )
slemuld.2 (𝜑𝐵 No )
slemuld.3 (𝜑𝐶 No )
slemuld.4 (𝜑𝐷 No )
slemuld.5 (𝜑𝐴 ≤s 𝐵)
slemuld.6 (𝜑𝐶 ≤s 𝐷)
Assertion
Ref Expression
slemuld (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))

Proof of Theorem slemuld
StepHypRef Expression
1 slemuld.1 . . . . . . . 8 (𝜑𝐴 No )
2 slemuld.4 . . . . . . . 8 (𝜑𝐷 No )
31, 2mulscld 28061 . . . . . . 7 (𝜑 → (𝐴 ·s 𝐷) ∈ No )
4 slemuld.3 . . . . . . . 8 (𝜑𝐶 No )
51, 4mulscld 28061 . . . . . . 7 (𝜑 → (𝐴 ·s 𝐶) ∈ No )
63, 5subscld 27990 . . . . . 6 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ∈ No )
76adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ∈ No )
8 slemuld.2 . . . . . . . 8 (𝜑𝐵 No )
98, 2mulscld 28061 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐷) ∈ No )
108, 4mulscld 28061 . . . . . . 7 (𝜑 → (𝐵 ·s 𝐶) ∈ No )
119, 10subscld 27990 . . . . . 6 (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No )
1211adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No )
131adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐴 No )
148adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐵 No )
154adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐶 No )
162adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐷 No )
17 simprl 770 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐴 <s 𝐵)
18 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → 𝐶 <s 𝐷)
1913, 14, 15, 16, 17, 18sltmuld 28063 . . . . 5 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) <s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
207, 12, 19sltled 27697 . . . 4 ((𝜑 ∧ (𝐴 <s 𝐵𝐶 <s 𝐷)) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
2120anassrs 467 . . 3 (((𝜑𝐴 <s 𝐵) ∧ 𝐶 <s 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
22 0sno 27758 . . . . . . . 8 0s No
23 slerflex 27691 . . . . . . . 8 ( 0s No → 0s ≤s 0s )
2422, 23mp1i 13 . . . . . . 7 (𝜑 → 0s ≤s 0s )
25 subsid 27996 . . . . . . . 8 ((𝐴 ·s 𝐷) ∈ No → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) = 0s )
263, 25syl 17 . . . . . . 7 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) = 0s )
27 subsid 27996 . . . . . . . 8 ((𝐵 ·s 𝐷) ∈ No → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)) = 0s )
289, 27syl 17 . . . . . . 7 (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)) = 0s )
2924, 26, 283brtr4d 5127 . . . . . 6 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)))
30 oveq2 7361 . . . . . . . 8 (𝐶 = 𝐷 → (𝐴 ·s 𝐶) = (𝐴 ·s 𝐷))
3130oveq2d 7369 . . . . . . 7 (𝐶 = 𝐷 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) = ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)))
32 oveq2 7361 . . . . . . . 8 (𝐶 = 𝐷 → (𝐵 ·s 𝐶) = (𝐵 ·s 𝐷))
3332oveq2d 7369 . . . . . . 7 (𝐶 = 𝐷 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) = ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷)))
3431, 33breq12d 5108 . . . . . 6 (𝐶 = 𝐷 → (((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ↔ ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐷)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐷))))
3529, 34syl5ibrcom 247 . . . . 5 (𝜑 → (𝐶 = 𝐷 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
3635imp 406 . . . 4 ((𝜑𝐶 = 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
3736adantlr 715 . . 3 (((𝜑𝐴 <s 𝐵) ∧ 𝐶 = 𝐷) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
38 slemuld.6 . . . . 5 (𝜑𝐶 ≤s 𝐷)
39 sleloe 27682 . . . . . 6 ((𝐶 No 𝐷 No ) → (𝐶 ≤s 𝐷 ↔ (𝐶 <s 𝐷𝐶 = 𝐷)))
404, 2, 39syl2anc 584 . . . . 5 (𝜑 → (𝐶 ≤s 𝐷 ↔ (𝐶 <s 𝐷𝐶 = 𝐷)))
4138, 40mpbid 232 . . . 4 (𝜑 → (𝐶 <s 𝐷𝐶 = 𝐷))
4241adantr 480 . . 3 ((𝜑𝐴 <s 𝐵) → (𝐶 <s 𝐷𝐶 = 𝐷))
4321, 37, 42mpjaodan 960 . 2 ((𝜑𝐴 <s 𝐵) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
44 slerflex 27691 . . . . 5 (((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ∈ No → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
4511, 44syl 17 . . . 4 (𝜑 → ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
46 oveq1 7360 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ·s 𝐷) = (𝐵 ·s 𝐷))
47 oveq1 7360 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ·s 𝐶) = (𝐵 ·s 𝐶))
4846, 47oveq12d 7371 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) = ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
4948breq1d 5105 . . . 4 (𝐴 = 𝐵 → (((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ↔ ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
5045, 49syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 𝐵 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶))))
5150imp 406 . 2 ((𝜑𝐴 = 𝐵) → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
52 slemuld.5 . . 3 (𝜑𝐴 ≤s 𝐵)
53 sleloe 27682 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
541, 8, 53syl2anc 584 . . 3 (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵𝐴 = 𝐵)))
5552, 54mpbid 232 . 2 (𝜑 → (𝐴 <s 𝐵𝐴 = 𝐵))
5643, 51, 55mpjaodan 960 1 (𝜑 → ((𝐴 ·s 𝐷) -s (𝐴 ·s 𝐶)) ≤s ((𝐵 ·s 𝐷) -s (𝐵 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353   No csur 27567   <s cslt 27568   ≤s csle 27672   0s c0s 27754   -s csubs 27949   ·s cmuls 28032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-muls 28033
This theorem is referenced by:  mulsuniflem  28075
  Copyright terms: Public domain W3C validator