MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsge0d Structured version   Visualization version   GIF version

Theorem mulsge0d 28190
Description: The product of two non-negative surreals is non-negative. (Contributed by Scott Fenton, 6-Mar-2025.)
Hypotheses
Ref Expression
mulsge0d.1 (𝜑𝐴 No )
mulsge0d.2 (𝜑𝐵 No )
mulsge0d.3 (𝜑 → 0s ≤s 𝐴)
mulsge0d.4 (𝜑 → 0s ≤s 𝐵)
Assertion
Ref Expression
mulsge0d (𝜑 → 0s ≤s (𝐴 ·s 𝐵))

Proof of Theorem mulsge0d
StepHypRef Expression
1 0sno 27889 . . . . 5 0s No
21a1i 11 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s No )
3 mulsge0d.1 . . . . . 6 (𝜑𝐴 No )
4 mulsge0d.2 . . . . . 6 (𝜑𝐵 No )
53, 4mulscld 28179 . . . . 5 (𝜑 → (𝐴 ·s 𝐵) ∈ No )
65ad2antrr 725 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → (𝐴 ·s 𝐵) ∈ No )
73ad2antrr 725 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 𝐴 No )
84ad2antrr 725 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 𝐵 No )
9 simplr 768 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s 𝐴)
10 simpr 484 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s 𝐵)
117, 8, 9, 10mulsgt0d 28189 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s (𝐴 ·s 𝐵))
122, 6, 11sltled 27832 . . 3 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
13 slerflex 27826 . . . . . 6 ( 0s No → 0s ≤s 0s )
141, 13ax-mp 5 . . . . 5 0s ≤s 0s
15 oveq2 7456 . . . . . . 7 ( 0s = 𝐵 → (𝐴 ·s 0s ) = (𝐴 ·s 𝐵))
1615adantl 481 . . . . . 6 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) = (𝐴 ·s 𝐵))
17 muls01 28156 . . . . . . . 8 (𝐴 No → (𝐴 ·s 0s ) = 0s )
183, 17syl 17 . . . . . . 7 (𝜑 → (𝐴 ·s 0s ) = 0s )
1918adantr 480 . . . . . 6 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) = 0s )
2016, 19eqtr3d 2782 . . . . 5 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 𝐵) = 0s )
2114, 20breqtrrid 5204 . . . 4 ((𝜑 ∧ 0s = 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
2221adantlr 714 . . 3 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s = 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
23 mulsge0d.4 . . . . 5 (𝜑 → 0s ≤s 𝐵)
24 sleloe 27817 . . . . . 6 (( 0s No 𝐵 No ) → ( 0s ≤s 𝐵 ↔ ( 0s <s 𝐵 ∨ 0s = 𝐵)))
251, 4, 24sylancr 586 . . . . 5 (𝜑 → ( 0s ≤s 𝐵 ↔ ( 0s <s 𝐵 ∨ 0s = 𝐵)))
2623, 25mpbid 232 . . . 4 (𝜑 → ( 0s <s 𝐵 ∨ 0s = 𝐵))
2726adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐴) → ( 0s <s 𝐵 ∨ 0s = 𝐵))
2812, 22, 27mpjaodan 959 . 2 ((𝜑 ∧ 0s <s 𝐴) → 0s ≤s (𝐴 ·s 𝐵))
29 oveq1 7455 . . . . 5 ( 0s = 𝐴 → ( 0s ·s 𝐵) = (𝐴 ·s 𝐵))
3029adantl 481 . . . 4 ((𝜑 ∧ 0s = 𝐴) → ( 0s ·s 𝐵) = (𝐴 ·s 𝐵))
31 muls02 28185 . . . . . 6 (𝐵 No → ( 0s ·s 𝐵) = 0s )
324, 31syl 17 . . . . 5 (𝜑 → ( 0s ·s 𝐵) = 0s )
3332adantr 480 . . . 4 ((𝜑 ∧ 0s = 𝐴) → ( 0s ·s 𝐵) = 0s )
3430, 33eqtr3d 2782 . . 3 ((𝜑 ∧ 0s = 𝐴) → (𝐴 ·s 𝐵) = 0s )
3514, 34breqtrrid 5204 . 2 ((𝜑 ∧ 0s = 𝐴) → 0s ≤s (𝐴 ·s 𝐵))
36 mulsge0d.3 . . 3 (𝜑 → 0s ≤s 𝐴)
37 sleloe 27817 . . . 4 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
381, 3, 37sylancr 586 . . 3 (𝜑 → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
3936, 38mpbid 232 . 2 (𝜑 → ( 0s <s 𝐴 ∨ 0s = 𝐴))
4028, 35, 39mpjaodan 959 1 (𝜑 → 0s ≤s (𝐴 ·s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448   No csur 27702   <s cslt 27703   ≤s csle 27807   0s c0s 27885   ·s cmuls 28150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151
This theorem is referenced by:  absmuls  28286
  Copyright terms: Public domain W3C validator