Proof of Theorem mulsge0d
Step | Hyp | Ref
| Expression |
1 | | 0sno 27889 |
. . . . 5
⊢
0s ∈ No |
2 | 1 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s
𝐵) → 0s
∈ No ) |
3 | | mulsge0d.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ No
) |
4 | | mulsge0d.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ No
) |
5 | 3, 4 | mulscld 28179 |
. . . . 5
⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No
) |
6 | 5 | ad2antrr 725 |
. . . 4
⊢ (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s
𝐵) → (𝐴 ·s 𝐵) ∈
No ) |
7 | 3 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s
𝐵) → 𝐴 ∈ No
) |
8 | 4 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s
𝐵) → 𝐵 ∈ No
) |
9 | | simplr 768 |
. . . . 5
⊢ (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s
𝐵) → 0s
<s 𝐴) |
10 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s
𝐵) → 0s
<s 𝐵) |
11 | 7, 8, 9, 10 | mulsgt0d 28189 |
. . . 4
⊢ (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s
𝐵) → 0s
<s (𝐴
·s 𝐵)) |
12 | 2, 6, 11 | sltled 27832 |
. . 3
⊢ (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s
𝐵) → 0s
≤s (𝐴
·s 𝐵)) |
13 | | slerflex 27826 |
. . . . . 6
⊢ (
0s ∈ No → 0s
≤s 0s ) |
14 | 1, 13 | ax-mp 5 |
. . . . 5
⊢
0s ≤s 0s |
15 | | oveq2 7456 |
. . . . . . 7
⊢ (
0s = 𝐵 →
(𝐴 ·s
0s ) = (𝐴
·s 𝐵)) |
16 | 15 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) =
(𝐴 ·s
𝐵)) |
17 | | muls01 28156 |
. . . . . . . 8
⊢ (𝐴 ∈
No → (𝐴
·s 0s ) = 0s ) |
18 | 3, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ·s 0s ) =
0s ) |
19 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) =
0s ) |
20 | 16, 19 | eqtr3d 2782 |
. . . . 5
⊢ ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 𝐵) = 0s ) |
21 | 14, 20 | breqtrrid 5204 |
. . . 4
⊢ ((𝜑 ∧ 0s = 𝐵) → 0s ≤s
(𝐴 ·s
𝐵)) |
22 | 21 | adantlr 714 |
. . 3
⊢ (((𝜑 ∧ 0s <s 𝐴) ∧ 0s = 𝐵) → 0s ≤s
(𝐴 ·s
𝐵)) |
23 | | mulsge0d.4 |
. . . . 5
⊢ (𝜑 → 0s ≤s 𝐵) |
24 | | sleloe 27817 |
. . . . . 6
⊢ ((
0s ∈ No ∧ 𝐵 ∈ No )
→ ( 0s ≤s 𝐵 ↔ ( 0s <s 𝐵 ∨ 0s = 𝐵))) |
25 | 1, 4, 24 | sylancr 586 |
. . . . 5
⊢ (𝜑 → ( 0s ≤s
𝐵 ↔ ( 0s
<s 𝐵 ∨ 0s
= 𝐵))) |
26 | 23, 25 | mpbid 232 |
. . . 4
⊢ (𝜑 → ( 0s <s
𝐵 ∨ 0s =
𝐵)) |
27 | 26 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0s <s 𝐴) → ( 0s <s
𝐵 ∨ 0s =
𝐵)) |
28 | 12, 22, 27 | mpjaodan 959 |
. 2
⊢ ((𝜑 ∧ 0s <s 𝐴) → 0s ≤s
(𝐴 ·s
𝐵)) |
29 | | oveq1 7455 |
. . . . 5
⊢ (
0s = 𝐴 → (
0s ·s 𝐵) = (𝐴 ·s 𝐵)) |
30 | 29 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 0s = 𝐴) → ( 0s
·s 𝐵) =
(𝐴 ·s
𝐵)) |
31 | | muls02 28185 |
. . . . . 6
⊢ (𝐵 ∈
No → ( 0s ·s 𝐵) = 0s ) |
32 | 4, 31 | syl 17 |
. . . . 5
⊢ (𝜑 → ( 0s
·s 𝐵) =
0s ) |
33 | 32 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 0s = 𝐴) → ( 0s
·s 𝐵) =
0s ) |
34 | 30, 33 | eqtr3d 2782 |
. . 3
⊢ ((𝜑 ∧ 0s = 𝐴) → (𝐴 ·s 𝐵) = 0s ) |
35 | 14, 34 | breqtrrid 5204 |
. 2
⊢ ((𝜑 ∧ 0s = 𝐴) → 0s ≤s
(𝐴 ·s
𝐵)) |
36 | | mulsge0d.3 |
. . 3
⊢ (𝜑 → 0s ≤s 𝐴) |
37 | | sleloe 27817 |
. . . 4
⊢ ((
0s ∈ No ∧ 𝐴 ∈ No )
→ ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴))) |
38 | 1, 3, 37 | sylancr 586 |
. . 3
⊢ (𝜑 → ( 0s ≤s
𝐴 ↔ ( 0s
<s 𝐴 ∨ 0s
= 𝐴))) |
39 | 36, 38 | mpbid 232 |
. 2
⊢ (𝜑 → ( 0s <s
𝐴 ∨ 0s =
𝐴)) |
40 | 28, 35, 39 | mpjaodan 959 |
1
⊢ (𝜑 → 0s ≤s (𝐴 ·s 𝐵)) |