MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsge0d Structured version   Visualization version   GIF version

Theorem mulsge0d 28056
Description: The product of two non-negative surreals is non-negative. (Contributed by Scott Fenton, 6-Mar-2025.)
Hypotheses
Ref Expression
mulsge0d.1 (𝜑𝐴 No )
mulsge0d.2 (𝜑𝐵 No )
mulsge0d.3 (𝜑 → 0s ≤s 𝐴)
mulsge0d.4 (𝜑 → 0s ≤s 𝐵)
Assertion
Ref Expression
mulsge0d (𝜑 → 0s ≤s (𝐴 ·s 𝐵))

Proof of Theorem mulsge0d
StepHypRef Expression
1 0sno 27745 . . . . 5 0s No
21a1i 11 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s No )
3 mulsge0d.1 . . . . . 6 (𝜑𝐴 No )
4 mulsge0d.2 . . . . . 6 (𝜑𝐵 No )
53, 4mulscld 28045 . . . . 5 (𝜑 → (𝐴 ·s 𝐵) ∈ No )
65ad2antrr 726 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → (𝐴 ·s 𝐵) ∈ No )
73ad2antrr 726 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 𝐴 No )
84ad2antrr 726 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 𝐵 No )
9 simplr 768 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s 𝐴)
10 simpr 484 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s 𝐵)
117, 8, 9, 10mulsgt0d 28055 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s (𝐴 ·s 𝐵))
122, 6, 11sltled 27688 . . 3 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
13 slerflex 27682 . . . . . 6 ( 0s No → 0s ≤s 0s )
141, 13ax-mp 5 . . . . 5 0s ≤s 0s
15 oveq2 7398 . . . . . . 7 ( 0s = 𝐵 → (𝐴 ·s 0s ) = (𝐴 ·s 𝐵))
1615adantl 481 . . . . . 6 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) = (𝐴 ·s 𝐵))
17 muls01 28022 . . . . . . . 8 (𝐴 No → (𝐴 ·s 0s ) = 0s )
183, 17syl 17 . . . . . . 7 (𝜑 → (𝐴 ·s 0s ) = 0s )
1918adantr 480 . . . . . 6 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) = 0s )
2016, 19eqtr3d 2767 . . . . 5 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 𝐵) = 0s )
2114, 20breqtrrid 5148 . . . 4 ((𝜑 ∧ 0s = 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
2221adantlr 715 . . 3 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s = 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
23 mulsge0d.4 . . . . 5 (𝜑 → 0s ≤s 𝐵)
24 sleloe 27673 . . . . . 6 (( 0s No 𝐵 No ) → ( 0s ≤s 𝐵 ↔ ( 0s <s 𝐵 ∨ 0s = 𝐵)))
251, 4, 24sylancr 587 . . . . 5 (𝜑 → ( 0s ≤s 𝐵 ↔ ( 0s <s 𝐵 ∨ 0s = 𝐵)))
2623, 25mpbid 232 . . . 4 (𝜑 → ( 0s <s 𝐵 ∨ 0s = 𝐵))
2726adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐴) → ( 0s <s 𝐵 ∨ 0s = 𝐵))
2812, 22, 27mpjaodan 960 . 2 ((𝜑 ∧ 0s <s 𝐴) → 0s ≤s (𝐴 ·s 𝐵))
29 oveq1 7397 . . . . 5 ( 0s = 𝐴 → ( 0s ·s 𝐵) = (𝐴 ·s 𝐵))
3029adantl 481 . . . 4 ((𝜑 ∧ 0s = 𝐴) → ( 0s ·s 𝐵) = (𝐴 ·s 𝐵))
31 muls02 28051 . . . . . 6 (𝐵 No → ( 0s ·s 𝐵) = 0s )
324, 31syl 17 . . . . 5 (𝜑 → ( 0s ·s 𝐵) = 0s )
3332adantr 480 . . . 4 ((𝜑 ∧ 0s = 𝐴) → ( 0s ·s 𝐵) = 0s )
3430, 33eqtr3d 2767 . . 3 ((𝜑 ∧ 0s = 𝐴) → (𝐴 ·s 𝐵) = 0s )
3514, 34breqtrrid 5148 . 2 ((𝜑 ∧ 0s = 𝐴) → 0s ≤s (𝐴 ·s 𝐵))
36 mulsge0d.3 . . 3 (𝜑 → 0s ≤s 𝐴)
37 sleloe 27673 . . . 4 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
381, 3, 37sylancr 587 . . 3 (𝜑 → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
3936, 38mpbid 232 . 2 (𝜑 → ( 0s <s 𝐴 ∨ 0s = 𝐴))
4028, 35, 39mpjaodan 960 1 (𝜑 → 0s ≤s (𝐴 ·s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390   No csur 27558   <s cslt 27559   ≤s csle 27663   0s c0s 27741   ·s cmuls 28016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017
This theorem is referenced by:  absmuls  28153
  Copyright terms: Public domain W3C validator