MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsge0d Structured version   Visualization version   GIF version

Theorem mulsge0d 28086
Description: The product of two non-negative surreals is non-negative. (Contributed by Scott Fenton, 6-Mar-2025.)
Hypotheses
Ref Expression
mulsge0d.1 (𝜑𝐴 No )
mulsge0d.2 (𝜑𝐵 No )
mulsge0d.3 (𝜑 → 0s ≤s 𝐴)
mulsge0d.4 (𝜑 → 0s ≤s 𝐵)
Assertion
Ref Expression
mulsge0d (𝜑 → 0s ≤s (𝐴 ·s 𝐵))

Proof of Theorem mulsge0d
StepHypRef Expression
1 0sno 27771 . . . . 5 0s No
21a1i 11 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s No )
3 mulsge0d.1 . . . . . 6 (𝜑𝐴 No )
4 mulsge0d.2 . . . . . 6 (𝜑𝐵 No )
53, 4mulscld 28075 . . . . 5 (𝜑 → (𝐴 ·s 𝐵) ∈ No )
65ad2antrr 726 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → (𝐴 ·s 𝐵) ∈ No )
73ad2antrr 726 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 𝐴 No )
84ad2antrr 726 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 𝐵 No )
9 simplr 768 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s 𝐴)
10 simpr 484 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s 𝐵)
117, 8, 9, 10mulsgt0d 28085 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s (𝐴 ·s 𝐵))
122, 6, 11sltled 27709 . . 3 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
13 slerflex 27703 . . . . . 6 ( 0s No → 0s ≤s 0s )
141, 13ax-mp 5 . . . . 5 0s ≤s 0s
15 oveq2 7354 . . . . . . 7 ( 0s = 𝐵 → (𝐴 ·s 0s ) = (𝐴 ·s 𝐵))
1615adantl 481 . . . . . 6 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) = (𝐴 ·s 𝐵))
17 muls01 28052 . . . . . . . 8 (𝐴 No → (𝐴 ·s 0s ) = 0s )
183, 17syl 17 . . . . . . 7 (𝜑 → (𝐴 ·s 0s ) = 0s )
1918adantr 480 . . . . . 6 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) = 0s )
2016, 19eqtr3d 2768 . . . . 5 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 𝐵) = 0s )
2114, 20breqtrrid 5129 . . . 4 ((𝜑 ∧ 0s = 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
2221adantlr 715 . . 3 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s = 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
23 mulsge0d.4 . . . . 5 (𝜑 → 0s ≤s 𝐵)
24 sleloe 27694 . . . . . 6 (( 0s No 𝐵 No ) → ( 0s ≤s 𝐵 ↔ ( 0s <s 𝐵 ∨ 0s = 𝐵)))
251, 4, 24sylancr 587 . . . . 5 (𝜑 → ( 0s ≤s 𝐵 ↔ ( 0s <s 𝐵 ∨ 0s = 𝐵)))
2623, 25mpbid 232 . . . 4 (𝜑 → ( 0s <s 𝐵 ∨ 0s = 𝐵))
2726adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐴) → ( 0s <s 𝐵 ∨ 0s = 𝐵))
2812, 22, 27mpjaodan 960 . 2 ((𝜑 ∧ 0s <s 𝐴) → 0s ≤s (𝐴 ·s 𝐵))
29 oveq1 7353 . . . . 5 ( 0s = 𝐴 → ( 0s ·s 𝐵) = (𝐴 ·s 𝐵))
3029adantl 481 . . . 4 ((𝜑 ∧ 0s = 𝐴) → ( 0s ·s 𝐵) = (𝐴 ·s 𝐵))
31 muls02 28081 . . . . . 6 (𝐵 No → ( 0s ·s 𝐵) = 0s )
324, 31syl 17 . . . . 5 (𝜑 → ( 0s ·s 𝐵) = 0s )
3332adantr 480 . . . 4 ((𝜑 ∧ 0s = 𝐴) → ( 0s ·s 𝐵) = 0s )
3430, 33eqtr3d 2768 . . 3 ((𝜑 ∧ 0s = 𝐴) → (𝐴 ·s 𝐵) = 0s )
3514, 34breqtrrid 5129 . 2 ((𝜑 ∧ 0s = 𝐴) → 0s ≤s (𝐴 ·s 𝐵))
36 mulsge0d.3 . . 3 (𝜑 → 0s ≤s 𝐴)
37 sleloe 27694 . . . 4 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
381, 3, 37sylancr 587 . . 3 (𝜑 → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
3936, 38mpbid 232 . 2 (𝜑 → ( 0s <s 𝐴 ∨ 0s = 𝐴))
4028, 35, 39mpjaodan 960 1 (𝜑 → 0s ≤s (𝐴 ·s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111   class class class wbr 5091  (class class class)co 7346   No csur 27579   <s cslt 27580   ≤s csle 27684   0s c0s 27767   ·s cmuls 28046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec 27882  df-norec2 27893  df-adds 27904  df-negs 27964  df-subs 27965  df-muls 28047
This theorem is referenced by:  absmuls  28183  zsoring  28333
  Copyright terms: Public domain W3C validator