MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsge0d Structured version   Visualization version   GIF version

Theorem mulsge0d 28088
Description: The product of two non-negative surreals is non-negative. (Contributed by Scott Fenton, 6-Mar-2025.)
Hypotheses
Ref Expression
mulsge0d.1 (𝜑𝐴 No )
mulsge0d.2 (𝜑𝐵 No )
mulsge0d.3 (𝜑 → 0s ≤s 𝐴)
mulsge0d.4 (𝜑 → 0s ≤s 𝐵)
Assertion
Ref Expression
mulsge0d (𝜑 → 0s ≤s (𝐴 ·s 𝐵))

Proof of Theorem mulsge0d
StepHypRef Expression
1 0sno 27773 . . . . 5 0s No
21a1i 11 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s No )
3 mulsge0d.1 . . . . . 6 (𝜑𝐴 No )
4 mulsge0d.2 . . . . . 6 (𝜑𝐵 No )
53, 4mulscld 28077 . . . . 5 (𝜑 → (𝐴 ·s 𝐵) ∈ No )
65ad2antrr 726 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → (𝐴 ·s 𝐵) ∈ No )
73ad2antrr 726 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 𝐴 No )
84ad2antrr 726 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 𝐵 No )
9 simplr 768 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s 𝐴)
10 simpr 484 . . . . 5 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s 𝐵)
117, 8, 9, 10mulsgt0d 28087 . . . 4 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s <s (𝐴 ·s 𝐵))
122, 6, 11sltled 27711 . . 3 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s <s 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
13 slerflex 27705 . . . . . 6 ( 0s No → 0s ≤s 0s )
141, 13ax-mp 5 . . . . 5 0s ≤s 0s
15 oveq2 7362 . . . . . . 7 ( 0s = 𝐵 → (𝐴 ·s 0s ) = (𝐴 ·s 𝐵))
1615adantl 481 . . . . . 6 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) = (𝐴 ·s 𝐵))
17 muls01 28054 . . . . . . . 8 (𝐴 No → (𝐴 ·s 0s ) = 0s )
183, 17syl 17 . . . . . . 7 (𝜑 → (𝐴 ·s 0s ) = 0s )
1918adantr 480 . . . . . 6 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 0s ) = 0s )
2016, 19eqtr3d 2770 . . . . 5 ((𝜑 ∧ 0s = 𝐵) → (𝐴 ·s 𝐵) = 0s )
2114, 20breqtrrid 5133 . . . 4 ((𝜑 ∧ 0s = 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
2221adantlr 715 . . 3 (((𝜑 ∧ 0s <s 𝐴) ∧ 0s = 𝐵) → 0s ≤s (𝐴 ·s 𝐵))
23 mulsge0d.4 . . . . 5 (𝜑 → 0s ≤s 𝐵)
24 sleloe 27696 . . . . . 6 (( 0s No 𝐵 No ) → ( 0s ≤s 𝐵 ↔ ( 0s <s 𝐵 ∨ 0s = 𝐵)))
251, 4, 24sylancr 587 . . . . 5 (𝜑 → ( 0s ≤s 𝐵 ↔ ( 0s <s 𝐵 ∨ 0s = 𝐵)))
2623, 25mpbid 232 . . . 4 (𝜑 → ( 0s <s 𝐵 ∨ 0s = 𝐵))
2726adantr 480 . . 3 ((𝜑 ∧ 0s <s 𝐴) → ( 0s <s 𝐵 ∨ 0s = 𝐵))
2812, 22, 27mpjaodan 960 . 2 ((𝜑 ∧ 0s <s 𝐴) → 0s ≤s (𝐴 ·s 𝐵))
29 oveq1 7361 . . . . 5 ( 0s = 𝐴 → ( 0s ·s 𝐵) = (𝐴 ·s 𝐵))
3029adantl 481 . . . 4 ((𝜑 ∧ 0s = 𝐴) → ( 0s ·s 𝐵) = (𝐴 ·s 𝐵))
31 muls02 28083 . . . . . 6 (𝐵 No → ( 0s ·s 𝐵) = 0s )
324, 31syl 17 . . . . 5 (𝜑 → ( 0s ·s 𝐵) = 0s )
3332adantr 480 . . . 4 ((𝜑 ∧ 0s = 𝐴) → ( 0s ·s 𝐵) = 0s )
3430, 33eqtr3d 2770 . . 3 ((𝜑 ∧ 0s = 𝐴) → (𝐴 ·s 𝐵) = 0s )
3514, 34breqtrrid 5133 . 2 ((𝜑 ∧ 0s = 𝐴) → 0s ≤s (𝐴 ·s 𝐵))
36 mulsge0d.3 . . 3 (𝜑 → 0s ≤s 𝐴)
37 sleloe 27696 . . . 4 (( 0s No 𝐴 No ) → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
381, 3, 37sylancr 587 . . 3 (𝜑 → ( 0s ≤s 𝐴 ↔ ( 0s <s 𝐴 ∨ 0s = 𝐴)))
3936, 38mpbid 232 . 2 (𝜑 → ( 0s <s 𝐴 ∨ 0s = 𝐴))
4028, 35, 39mpjaodan 960 1 (𝜑 → 0s ≤s (𝐴 ·s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113   class class class wbr 5095  (class class class)co 7354   No csur 27581   <s cslt 27582   ≤s csle 27686   0s c0s 27769   ·s cmuls 28048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-1o 8393  df-2o 8394  df-nadd 8589  df-no 27584  df-slt 27585  df-bday 27586  df-sle 27687  df-sslt 27724  df-scut 27726  df-0s 27771  df-made 27791  df-old 27792  df-left 27794  df-right 27795  df-norec 27884  df-norec2 27895  df-adds 27906  df-negs 27966  df-subs 27967  df-muls 28049
This theorem is referenced by:  absmuls  28185  zsoring  28335
  Copyright terms: Public domain W3C validator