![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vdwapid1 | Structured version Visualization version GIF version |
Description: The first element of an arithmetic progression. (Contributed by Mario Carneiro, 12-Sep-2014.) |
Ref | Expression |
---|---|
vdwapid1 | ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4188 | . . 3 ⊢ {𝐴} ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) | |
2 | snssg 4788 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) ↔ {𝐴} ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))) | |
3 | 2 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) ↔ {𝐴} ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))) |
4 | 1, 3 | mpbiri 258 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
5 | nncn 12272 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℂ) | |
6 | 5 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ ℂ) |
7 | ax-1cn 11211 | . . . . . 6 ⊢ 1 ∈ ℂ | |
8 | npcan 11515 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾) | |
9 | 6, 7, 8 | sylancl 586 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐾 − 1) + 1) = 𝐾) |
10 | 9 | fveq2d 6911 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (AP‘((𝐾 − 1) + 1)) = (AP‘𝐾)) |
11 | 10 | oveqd 7448 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷)) |
12 | nnm1nn0 12565 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
13 | vdwapun 17008 | . . . 4 ⊢ (((𝐾 − 1) ∈ ℕ0 ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) | |
14 | 12, 13 | syl3an1 1162 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
15 | 11, 14 | eqtr3d 2777 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))) |
16 | 4, 15 | eleqtrrd 2842 | 1 ⊢ ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 {csn 4631 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 − cmin 11490 ℕcn 12264 ℕ0cn0 12524 APcvdwa 16999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-vdwap 17002 |
This theorem is referenced by: vdwmc2 17013 vdwlem5 17019 vdwlem6 17020 vdwlem8 17022 vdwlem9 17023 vdwlem11 17025 |
Copyright terms: Public domain | W3C validator |