MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapid1 Structured version   Visualization version   GIF version

Theorem vdwapid1 16904
Description: The first element of an arithmetic progression. (Contributed by Mario Carneiro, 12-Sep-2014.)
Assertion
Ref Expression
vdwapid1 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷))

Proof of Theorem vdwapid1
StepHypRef Expression
1 ssun1 4171 . . 3 {𝐴} ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
2 snssg 4786 . . . 4 (𝐴 ∈ ℕ → (𝐴 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) ↔ {𝐴} ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))))
323ad2ant2 1135 . . 3 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)) ↔ {𝐴} ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))))
41, 3mpbiri 258 . 2 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
5 nncn 12216 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
653ad2ant1 1134 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐾 ∈ ℂ)
7 ax-1cn 11164 . . . . . 6 1 ∈ ℂ
8 npcan 11465 . . . . . 6 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
96, 7, 8sylancl 587 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐾 − 1) + 1) = 𝐾)
109fveq2d 6892 . . . 4 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (AP‘((𝐾 − 1) + 1)) = (AP‘𝐾))
1110oveqd 7421 . . 3 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷))
12 nnm1nn0 12509 . . . 4 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
13 vdwapun 16903 . . . 4 (((𝐾 − 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
1412, 13syl3an1 1164 . . 3 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
1511, 14eqtr3d 2775 . 2 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
164, 15eleqtrrd 2837 1 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wcel 2107  cun 3945  wss 3947  {csn 4627  cfv 6540  (class class class)co 7404  cc 11104  1c1 11107   + caddc 11109  cmin 11440  cn 12208  0cn0 12468  APcvdwa 16894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-vdwap 16897
This theorem is referenced by:  vdwmc2  16908  vdwlem5  16914  vdwlem6  16915  vdwlem8  16917  vdwlem9  16918  vdwlem11  16920
  Copyright terms: Public domain W3C validator