Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasabl Structured version   Visualization version   GIF version

Theorem isnumbasabl 41619
Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
isnumbasabl (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel))

Proof of Theorem isnumbasabl
StepHypRef Expression
1 harcl 9536 . . . . 5 (har‘𝑆) ∈ On
2 onenon 9926 . . . . 5 ((har‘𝑆) ∈ On → (har‘𝑆) ∈ dom card)
31, 2ax-mp 5 . . . 4 (har‘𝑆) ∈ dom card
4 unnum 10173 . . . 4 ((𝑆 ∈ dom card ∧ (har‘𝑆) ∈ dom card) → (𝑆 ∪ (har‘𝑆)) ∈ dom card)
53, 4mpan2 689 . . 3 (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ dom card)
6 ssun2 4169 . . . 4 (har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆))
7 harn0 41615 . . . 4 (𝑆 ∈ dom card → (har‘𝑆) ≠ ∅)
8 ssn0 4396 . . . 4 (((har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆)) ∧ (har‘𝑆) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ≠ ∅)
96, 7, 8sylancr 587 . . 3 (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ≠ ∅)
10 isnumbasgrplem3 41618 . . 3 (((𝑆 ∪ (har‘𝑆)) ∈ dom card ∧ (𝑆 ∪ (har‘𝑆)) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel))
115, 9, 10syl2anc 584 . 2 (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel))
12 ablgrp 19617 . . . . . 6 (𝑥 ∈ Abel → 𝑥 ∈ Grp)
1312ssriv 3982 . . . . 5 Abel ⊆ Grp
14 imass2 6090 . . . . 5 (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp))
1513, 14ax-mp 5 . . . 4 (Base “ Abel) ⊆ (Base “ Grp)
1615sseli 3974 . . 3 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp))
17 isnumbasgrplem2 41617 . . 3 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card)
1816, 17syl 17 . 2 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → 𝑆 ∈ dom card)
1911, 18impbii 208 1 (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  wne 2939  cun 3942  wss 3944  c0 4318  dom cdm 5669  cima 5672  Oncon0 6353  cfv 6532  harchar 9533  cardccrd 9912  Basecbs 17126  Grpcgrp 18794  Abelcabl 19613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-tpos 8193  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-seqom 8430  df-1o 8448  df-2o 8449  df-oadd 8452  df-omul 8453  df-er 8686  df-ec 8688  df-qs 8692  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-inf 9420  df-oi 9487  df-har 9534  df-wdom 9542  df-dju 9878  df-card 9916  df-acn 9919  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-rp 12957  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-seq 13949  df-hash 14273  df-dvds 16180  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17369  df-prds 17375  df-pws 17377  df-imas 17436  df-qus 17437  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-mhm 18647  df-grp 18797  df-minusg 18798  df-sbg 18799  df-mulg 18923  df-subg 18975  df-nsg 18976  df-eqg 18977  df-ghm 19056  df-gim 19099  df-gic 19100  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-cring 20017  df-oppr 20102  df-dvdsr 20123  df-rnghom 20201  df-subrg 20310  df-lmod 20422  df-lss 20492  df-lsp 20532  df-sra 20734  df-rgmod 20735  df-lidl 20736  df-rsp 20737  df-2idl 20803  df-cnfld 20879  df-zring 20952  df-zrh 20986  df-zn 20989  df-dsmm 21220  df-frlm 21235
This theorem is referenced by:  isnumbasgrp  41620
  Copyright terms: Public domain W3C validator