| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasabl | Structured version Visualization version GIF version | ||
| Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| isnumbasabl | ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 9571 | . . . . 5 ⊢ (har‘𝑆) ∈ On | |
| 2 | onenon 9961 | . . . . 5 ⊢ ((har‘𝑆) ∈ On → (har‘𝑆) ∈ dom card) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (har‘𝑆) ∈ dom card |
| 4 | unnum 10209 | . . . 4 ⊢ ((𝑆 ∈ dom card ∧ (har‘𝑆) ∈ dom card) → (𝑆 ∪ (har‘𝑆)) ∈ dom card) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ dom card) |
| 6 | ssun2 4154 | . . . 4 ⊢ (har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆)) | |
| 7 | harn0 43073 | . . . 4 ⊢ (𝑆 ∈ dom card → (har‘𝑆) ≠ ∅) | |
| 8 | ssn0 4379 | . . . 4 ⊢ (((har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆)) ∧ (har‘𝑆) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ≠ ∅) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ≠ ∅) |
| 10 | isnumbasgrplem3 43076 | . . 3 ⊢ (((𝑆 ∪ (har‘𝑆)) ∈ dom card ∧ (𝑆 ∪ (har‘𝑆)) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) | |
| 11 | 5, 9, 10 | syl2anc 584 | . 2 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
| 12 | ablgrp 19764 | . . . . . 6 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
| 13 | 12 | ssriv 3962 | . . . . 5 ⊢ Abel ⊆ Grp |
| 14 | imass2 6089 | . . . . 5 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
| 16 | 15 | sseli 3954 | . . 3 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
| 17 | isnumbasgrplem2 43075 | . . 3 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → 𝑆 ∈ dom card) |
| 19 | 11, 18 | impbii 209 | 1 ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ≠ wne 2932 ∪ cun 3924 ⊆ wss 3926 ∅c0 4308 dom cdm 5654 “ cima 5657 Oncon0 6352 ‘cfv 6530 harchar 9568 cardccrd 9947 Basecbs 17226 Grpcgrp 18914 Abelcabl 19760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-seqom 8460 df-1o 8478 df-2o 8479 df-oadd 8482 df-omul 8483 df-er 8717 df-ec 8719 df-qs 8723 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-inf 9453 df-oi 9522 df-har 9569 df-wdom 9577 df-dju 9913 df-card 9951 df-acn 9954 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-hash 14347 df-dvds 16271 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-0g 17453 df-prds 17459 df-pws 17461 df-imas 17520 df-qus 17521 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19049 df-subg 19104 df-nsg 19105 df-eqg 19106 df-ghm 19194 df-gim 19240 df-gic 19241 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-oppr 20295 df-dvdsr 20315 df-rhm 20430 df-subrng 20504 df-subrg 20528 df-lmod 20817 df-lss 20887 df-lsp 20927 df-sra 21129 df-rgmod 21130 df-lidl 21167 df-rsp 21168 df-2idl 21209 df-cnfld 21314 df-zring 21406 df-zrh 21462 df-zn 21465 df-dsmm 21690 df-frlm 21705 |
| This theorem is referenced by: isnumbasgrp 43078 |
| Copyright terms: Public domain | W3C validator |