| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasabl | Structured version Visualization version GIF version | ||
| Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| isnumbasabl | ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 9599 | . . . . 5 ⊢ (har‘𝑆) ∈ On | |
| 2 | onenon 9989 | . . . . 5 ⊢ ((har‘𝑆) ∈ On → (har‘𝑆) ∈ dom card) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (har‘𝑆) ∈ dom card |
| 4 | unnum 10237 | . . . 4 ⊢ ((𝑆 ∈ dom card ∧ (har‘𝑆) ∈ dom card) → (𝑆 ∪ (har‘𝑆)) ∈ dom card) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ dom card) |
| 6 | ssun2 4179 | . . . 4 ⊢ (har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆)) | |
| 7 | harn0 43114 | . . . 4 ⊢ (𝑆 ∈ dom card → (har‘𝑆) ≠ ∅) | |
| 8 | ssn0 4404 | . . . 4 ⊢ (((har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆)) ∧ (har‘𝑆) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ≠ ∅) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ≠ ∅) |
| 10 | isnumbasgrplem3 43117 | . . 3 ⊢ (((𝑆 ∪ (har‘𝑆)) ∈ dom card ∧ (𝑆 ∪ (har‘𝑆)) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) | |
| 11 | 5, 9, 10 | syl2anc 584 | . 2 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
| 12 | ablgrp 19803 | . . . . . 6 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
| 13 | 12 | ssriv 3987 | . . . . 5 ⊢ Abel ⊆ Grp |
| 14 | imass2 6120 | . . . . 5 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
| 16 | 15 | sseli 3979 | . . 3 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
| 17 | isnumbasgrplem2 43116 | . . 3 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → 𝑆 ∈ dom card) |
| 19 | 11, 18 | impbii 209 | 1 ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ≠ wne 2940 ∪ cun 3949 ⊆ wss 3951 ∅c0 4333 dom cdm 5685 “ cima 5688 Oncon0 6384 ‘cfv 6561 harchar 9596 cardccrd 9975 Basecbs 17247 Grpcgrp 18951 Abelcabl 19799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-seqom 8488 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-ec 8747 df-qs 8751 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-inf 9483 df-oi 9550 df-har 9597 df-wdom 9605 df-dju 9941 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-hash 14370 df-dvds 16291 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17486 df-prds 17492 df-pws 17494 df-imas 17553 df-qus 17554 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-nsg 19142 df-eqg 19143 df-ghm 19231 df-gim 19277 df-gic 19278 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-rhm 20472 df-subrng 20546 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-rsp 21219 df-2idl 21260 df-cnfld 21365 df-zring 21458 df-zrh 21514 df-zn 21517 df-dsmm 21752 df-frlm 21767 |
| This theorem is referenced by: isnumbasgrp 43119 |
| Copyright terms: Public domain | W3C validator |