| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasabl | Structured version Visualization version GIF version | ||
| Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| isnumbasabl | ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 9451 | . . . . 5 ⊢ (har‘𝑆) ∈ On | |
| 2 | onenon 9845 | . . . . 5 ⊢ ((har‘𝑆) ∈ On → (har‘𝑆) ∈ dom card) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (har‘𝑆) ∈ dom card |
| 4 | unnum 10091 | . . . 4 ⊢ ((𝑆 ∈ dom card ∧ (har‘𝑆) ∈ dom card) → (𝑆 ∪ (har‘𝑆)) ∈ dom card) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ dom card) |
| 6 | ssun2 4130 | . . . 4 ⊢ (har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆)) | |
| 7 | harn0 43079 | . . . 4 ⊢ (𝑆 ∈ dom card → (har‘𝑆) ≠ ∅) | |
| 8 | ssn0 4355 | . . . 4 ⊢ (((har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆)) ∧ (har‘𝑆) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ≠ ∅) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ≠ ∅) |
| 10 | isnumbasgrplem3 43082 | . . 3 ⊢ (((𝑆 ∪ (har‘𝑆)) ∈ dom card ∧ (𝑆 ∪ (har‘𝑆)) ≠ ∅) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) | |
| 11 | 5, 9, 10 | syl2anc 584 | . 2 ⊢ (𝑆 ∈ dom card → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
| 12 | ablgrp 19664 | . . . . . 6 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
| 13 | 12 | ssriv 3939 | . . . . 5 ⊢ Abel ⊆ Grp |
| 14 | imass2 6053 | . . . . 5 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
| 16 | 15 | sseli 3931 | . . 3 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) |
| 17 | isnumbasgrplem2 43081 | . . 3 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | |
| 18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel) → 𝑆 ∈ dom card) |
| 19 | 11, 18 | impbii 209 | 1 ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 ∪ cun 3901 ⊆ wss 3903 ∅c0 4284 dom cdm 5619 “ cima 5622 Oncon0 6307 ‘cfv 6482 harchar 9448 cardccrd 9831 Basecbs 17120 Grpcgrp 18812 Abelcabl 19660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-seqom 8370 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-har 9449 df-wdom 9457 df-dju 9797 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-hash 14238 df-dvds 16164 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-imas 17412 df-qus 17413 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19092 df-gim 19138 df-gic 19139 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-lsp 20875 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-rsp 21116 df-2idl 21157 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-zn 21413 df-dsmm 21639 df-frlm 21654 |
| This theorem is referenced by: isnumbasgrp 43084 |
| Copyright terms: Public domain | W3C validator |