| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfacbasgrp | Structured version Visualization version GIF version | ||
| Description: A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| dfacbasgrp | ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac10 10040 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
| 2 | basfn 17131 | . . . . . . . . . 10 ⊢ Base Fn V | |
| 3 | ssv 3955 | . . . . . . . . . 10 ⊢ Grp ⊆ V | |
| 4 | fvelimab 6903 | . . . . . . . . . 10 ⊢ ((Base Fn V ∧ Grp ⊆ V) → (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥)) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . . . 9 ⊢ (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥) |
| 6 | eqid 2733 | . . . . . . . . . . . 12 ⊢ (Base‘𝑦) = (Base‘𝑦) | |
| 7 | 6 | grpbn0 18887 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ Grp → (Base‘𝑦) ≠ ∅) |
| 8 | neeq1 2991 | . . . . . . . . . . 11 ⊢ ((Base‘𝑦) = 𝑥 → ((Base‘𝑦) ≠ ∅ ↔ 𝑥 ≠ ∅)) | |
| 9 | 7, 8 | syl5ibcom 245 | . . . . . . . . . 10 ⊢ (𝑦 ∈ Grp → ((Base‘𝑦) = 𝑥 → 𝑥 ≠ ∅)) |
| 10 | 9 | rexlimiv 3127 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥 → 𝑥 ≠ ∅) |
| 11 | 5, 10 | sylbi 217 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base “ Grp) → 𝑥 ≠ ∅) |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → 𝑥 ≠ ∅) |
| 13 | vex 3441 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 14 | 12, 13 | jctil 519 | . . . . . 6 ⊢ ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) |
| 15 | ablgrp 19705 | . . . . . . . . 9 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
| 16 | 15 | ssriv 3934 | . . . . . . . 8 ⊢ Abel ⊆ Grp |
| 17 | imass2 6058 | . . . . . . . 8 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
| 19 | simprl 770 | . . . . . . . . 9 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ V) | |
| 20 | simpl 482 | . . . . . . . . 9 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → dom card = V) | |
| 21 | 19, 20 | eleqtrrd 2836 | . . . . . . . 8 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ dom card) |
| 22 | simprr 772 | . . . . . . . 8 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅) | |
| 23 | isnumbasgrplem3 43262 | . . . . . . . 8 ⊢ ((𝑥 ∈ dom card ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Base “ Abel)) | |
| 24 | 21, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Abel)) |
| 25 | 18, 24 | sselid 3928 | . . . . . 6 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Grp)) |
| 26 | 14, 25 | impbida 800 | . . . . 5 ⊢ (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅))) |
| 27 | eldifsn 4739 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ {∅}) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) | |
| 28 | 26, 27 | bitr4di 289 | . . . 4 ⊢ (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ 𝑥 ∈ (V ∖ {∅}))) |
| 29 | 28 | eqrdv 2731 | . . 3 ⊢ (dom card = V → (Base “ Grp) = (V ∖ {∅})) |
| 30 | fvex 6844 | . . . . . . . . . 10 ⊢ (har‘𝑥) ∈ V | |
| 31 | 13, 30 | unex 7686 | . . . . . . . . 9 ⊢ (𝑥 ∪ (har‘𝑥)) ∈ V |
| 32 | ssun2 4128 | . . . . . . . . . 10 ⊢ (har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) | |
| 33 | harn0 43259 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ V → (har‘𝑥) ≠ ∅) | |
| 34 | 13, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ (har‘𝑥) ≠ ∅ |
| 35 | ssn0 4353 | . . . . . . . . . 10 ⊢ (((har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) ∧ (har‘𝑥) ≠ ∅) → (𝑥 ∪ (har‘𝑥)) ≠ ∅) | |
| 36 | 32, 34, 35 | mp2an 692 | . . . . . . . . 9 ⊢ (𝑥 ∪ (har‘𝑥)) ≠ ∅ |
| 37 | eldifsn 4739 | . . . . . . . . 9 ⊢ ((𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) ↔ ((𝑥 ∪ (har‘𝑥)) ∈ V ∧ (𝑥 ∪ (har‘𝑥)) ≠ ∅)) | |
| 38 | 31, 36, 37 | mpbir2an 711 | . . . . . . . 8 ⊢ (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) |
| 39 | 38 | a1i 11 | . . . . . . 7 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅})) |
| 40 | id 22 | . . . . . . 7 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (Base “ Grp) = (V ∖ {∅})) | |
| 41 | 39, 40 | eleqtrrd 2836 | . . . . . 6 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp)) |
| 42 | isnumbasgrp 43264 | . . . . . 6 ⊢ (𝑥 ∈ dom card ↔ (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp)) | |
| 43 | 41, 42 | sylibr 234 | . . . . 5 ⊢ ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ dom card) |
| 44 | 13 | a1i 11 | . . . . 5 ⊢ ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ V) |
| 45 | 43, 44 | 2thd 265 | . . . 4 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
| 46 | 45 | eqrdv 2731 | . . 3 ⊢ ((Base “ Grp) = (V ∖ {∅}) → dom card = V) |
| 47 | 29, 46 | impbii 209 | . 2 ⊢ (dom card = V ↔ (Base “ Grp) = (V ∖ {∅})) |
| 48 | 1, 47 | bitri 275 | 1 ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ⊆ wss 3898 ∅c0 4282 {csn 4577 dom cdm 5621 “ cima 5624 Fn wfn 6484 ‘cfv 6489 harchar 9453 cardccrd 9839 CHOICEwac 10017 Basecbs 17127 Grpcgrp 18854 Abelcabl 19701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-seqom 8376 df-1o 8394 df-2o 8395 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-inf 9338 df-oi 9407 df-har 9454 df-wdom 9462 df-dju 9805 df-card 9843 df-acn 9846 df-ac 10018 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-hash 14245 df-dvds 16171 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-0g 17352 df-prds 17358 df-pws 17360 df-imas 17420 df-qus 17421 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-nsg 19045 df-eqg 19046 df-ghm 19133 df-gim 19179 df-gic 19180 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-rhm 20399 df-subrng 20470 df-subrg 20494 df-lmod 20804 df-lss 20874 df-lsp 20914 df-sra 21116 df-rgmod 21117 df-lidl 21154 df-rsp 21155 df-2idl 21196 df-cnfld 21301 df-zring 21393 df-zrh 21449 df-zn 21452 df-dsmm 21678 df-frlm 21693 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |