| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfacbasgrp | Structured version Visualization version GIF version | ||
| Description: A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| dfacbasgrp | ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac10 10179 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
| 2 | basfn 17252 | . . . . . . . . . 10 ⊢ Base Fn V | |
| 3 | ssv 4007 | . . . . . . . . . 10 ⊢ Grp ⊆ V | |
| 4 | fvelimab 6980 | . . . . . . . . . 10 ⊢ ((Base Fn V ∧ Grp ⊆ V) → (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥)) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . . . 9 ⊢ (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥) |
| 6 | eqid 2736 | . . . . . . . . . . . 12 ⊢ (Base‘𝑦) = (Base‘𝑦) | |
| 7 | 6 | grpbn0 18985 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ Grp → (Base‘𝑦) ≠ ∅) |
| 8 | neeq1 3002 | . . . . . . . . . . 11 ⊢ ((Base‘𝑦) = 𝑥 → ((Base‘𝑦) ≠ ∅ ↔ 𝑥 ≠ ∅)) | |
| 9 | 7, 8 | syl5ibcom 245 | . . . . . . . . . 10 ⊢ (𝑦 ∈ Grp → ((Base‘𝑦) = 𝑥 → 𝑥 ≠ ∅)) |
| 10 | 9 | rexlimiv 3147 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥 → 𝑥 ≠ ∅) |
| 11 | 5, 10 | sylbi 217 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base “ Grp) → 𝑥 ≠ ∅) |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → 𝑥 ≠ ∅) |
| 13 | vex 3483 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 14 | 12, 13 | jctil 519 | . . . . . 6 ⊢ ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) |
| 15 | ablgrp 19804 | . . . . . . . . 9 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
| 16 | 15 | ssriv 3986 | . . . . . . . 8 ⊢ Abel ⊆ Grp |
| 17 | imass2 6119 | . . . . . . . 8 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
| 19 | simprl 770 | . . . . . . . . 9 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ V) | |
| 20 | simpl 482 | . . . . . . . . 9 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → dom card = V) | |
| 21 | 19, 20 | eleqtrrd 2843 | . . . . . . . 8 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ dom card) |
| 22 | simprr 772 | . . . . . . . 8 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅) | |
| 23 | isnumbasgrplem3 43122 | . . . . . . . 8 ⊢ ((𝑥 ∈ dom card ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Base “ Abel)) | |
| 24 | 21, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Abel)) |
| 25 | 18, 24 | sselid 3980 | . . . . . 6 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Grp)) |
| 26 | 14, 25 | impbida 800 | . . . . 5 ⊢ (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅))) |
| 27 | eldifsn 4785 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ {∅}) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) | |
| 28 | 26, 27 | bitr4di 289 | . . . 4 ⊢ (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ 𝑥 ∈ (V ∖ {∅}))) |
| 29 | 28 | eqrdv 2734 | . . 3 ⊢ (dom card = V → (Base “ Grp) = (V ∖ {∅})) |
| 30 | fvex 6918 | . . . . . . . . . 10 ⊢ (har‘𝑥) ∈ V | |
| 31 | 13, 30 | unex 7765 | . . . . . . . . 9 ⊢ (𝑥 ∪ (har‘𝑥)) ∈ V |
| 32 | ssun2 4178 | . . . . . . . . . 10 ⊢ (har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) | |
| 33 | harn0 43119 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ V → (har‘𝑥) ≠ ∅) | |
| 34 | 13, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ (har‘𝑥) ≠ ∅ |
| 35 | ssn0 4403 | . . . . . . . . . 10 ⊢ (((har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) ∧ (har‘𝑥) ≠ ∅) → (𝑥 ∪ (har‘𝑥)) ≠ ∅) | |
| 36 | 32, 34, 35 | mp2an 692 | . . . . . . . . 9 ⊢ (𝑥 ∪ (har‘𝑥)) ≠ ∅ |
| 37 | eldifsn 4785 | . . . . . . . . 9 ⊢ ((𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) ↔ ((𝑥 ∪ (har‘𝑥)) ∈ V ∧ (𝑥 ∪ (har‘𝑥)) ≠ ∅)) | |
| 38 | 31, 36, 37 | mpbir2an 711 | . . . . . . . 8 ⊢ (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) |
| 39 | 38 | a1i 11 | . . . . . . 7 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅})) |
| 40 | id 22 | . . . . . . 7 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (Base “ Grp) = (V ∖ {∅})) | |
| 41 | 39, 40 | eleqtrrd 2843 | . . . . . 6 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp)) |
| 42 | isnumbasgrp 43124 | . . . . . 6 ⊢ (𝑥 ∈ dom card ↔ (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp)) | |
| 43 | 41, 42 | sylibr 234 | . . . . 5 ⊢ ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ dom card) |
| 44 | 13 | a1i 11 | . . . . 5 ⊢ ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ V) |
| 45 | 43, 44 | 2thd 265 | . . . 4 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
| 46 | 45 | eqrdv 2734 | . . 3 ⊢ ((Base “ Grp) = (V ∖ {∅}) → dom card = V) |
| 47 | 29, 46 | impbii 209 | . 2 ⊢ (dom card = V ↔ (Base “ Grp) = (V ∖ {∅})) |
| 48 | 1, 47 | bitri 275 | 1 ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∃wrex 3069 Vcvv 3479 ∖ cdif 3947 ∪ cun 3948 ⊆ wss 3950 ∅c0 4332 {csn 4625 dom cdm 5684 “ cima 5687 Fn wfn 6555 ‘cfv 6560 harchar 9597 cardccrd 9976 CHOICEwac 10156 Basecbs 17248 Grpcgrp 18952 Abelcabl 19800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 ax-mulf 11236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-seqom 8489 df-1o 8507 df-2o 8508 df-oadd 8511 df-omul 8512 df-er 8746 df-ec 8748 df-qs 8752 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-inf 9484 df-oi 9551 df-har 9598 df-wdom 9606 df-dju 9942 df-card 9980 df-acn 9983 df-ac 10157 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-hash 14371 df-dvds 16292 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17487 df-prds 17493 df-pws 17495 df-imas 17554 df-qus 17555 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-nsg 19143 df-eqg 19144 df-ghm 19232 df-gim 19278 df-gic 19279 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-cring 20234 df-oppr 20335 df-dvdsr 20358 df-rhm 20473 df-subrng 20547 df-subrg 20571 df-lmod 20861 df-lss 20931 df-lsp 20971 df-sra 21173 df-rgmod 21174 df-lidl 21219 df-rsp 21220 df-2idl 21261 df-cnfld 21366 df-zring 21459 df-zrh 21515 df-zn 21518 df-dsmm 21753 df-frlm 21768 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |