Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfacbasgrp Structured version   Visualization version   GIF version

Theorem dfacbasgrp 40052
Description: A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
dfacbasgrp (CHOICE ↔ (Base “ Grp) = (V ∖ {∅}))

Proof of Theorem dfacbasgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac10 9548 . 2 (CHOICE ↔ dom card = V)
2 basfn 16495 . . . . . . . . . 10 Base Fn V
3 ssv 3939 . . . . . . . . . 10 Grp ⊆ V
4 fvelimab 6712 . . . . . . . . . 10 ((Base Fn V ∧ Grp ⊆ V) → (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥))
52, 3, 4mp2an 691 . . . . . . . . 9 (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥)
6 eqid 2798 . . . . . . . . . . . 12 (Base‘𝑦) = (Base‘𝑦)
76grpbn0 18124 . . . . . . . . . . 11 (𝑦 ∈ Grp → (Base‘𝑦) ≠ ∅)
8 neeq1 3049 . . . . . . . . . . 11 ((Base‘𝑦) = 𝑥 → ((Base‘𝑦) ≠ ∅ ↔ 𝑥 ≠ ∅))
97, 8syl5ibcom 248 . . . . . . . . . 10 (𝑦 ∈ Grp → ((Base‘𝑦) = 𝑥𝑥 ≠ ∅))
109rexlimiv 3239 . . . . . . . . 9 (∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥𝑥 ≠ ∅)
115, 10sylbi 220 . . . . . . . 8 (𝑥 ∈ (Base “ Grp) → 𝑥 ≠ ∅)
1211adantl 485 . . . . . . 7 ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → 𝑥 ≠ ∅)
13 vex 3444 . . . . . . 7 𝑥 ∈ V
1412, 13jctil 523 . . . . . 6 ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → (𝑥 ∈ V ∧ 𝑥 ≠ ∅))
15 ablgrp 18903 . . . . . . . . 9 (𝑥 ∈ Abel → 𝑥 ∈ Grp)
1615ssriv 3919 . . . . . . . 8 Abel ⊆ Grp
17 imass2 5932 . . . . . . . 8 (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp))
1816, 17ax-mp 5 . . . . . . 7 (Base “ Abel) ⊆ (Base “ Grp)
19 simprl 770 . . . . . . . . 9 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ V)
20 simpl 486 . . . . . . . . 9 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → dom card = V)
2119, 20eleqtrrd 2893 . . . . . . . 8 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ dom card)
22 simprr 772 . . . . . . . 8 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
23 isnumbasgrplem3 40049 . . . . . . . 8 ((𝑥 ∈ dom card ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Base “ Abel))
2421, 22, 23syl2anc 587 . . . . . . 7 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Abel))
2518, 24sseldi 3913 . . . . . 6 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Grp))
2614, 25impbida 800 . . . . 5 (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)))
27 eldifsn 4680 . . . . 5 (𝑥 ∈ (V ∖ {∅}) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅))
2826, 27syl6bbr 292 . . . 4 (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ 𝑥 ∈ (V ∖ {∅})))
2928eqrdv 2796 . . 3 (dom card = V → (Base “ Grp) = (V ∖ {∅}))
30 fvex 6658 . . . . . . . . . 10 (har‘𝑥) ∈ V
3113, 30unex 7449 . . . . . . . . 9 (𝑥 ∪ (har‘𝑥)) ∈ V
32 ssun2 4100 . . . . . . . . . 10 (har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥))
33 harn0 40046 . . . . . . . . . . 11 (𝑥 ∈ V → (har‘𝑥) ≠ ∅)
3413, 33ax-mp 5 . . . . . . . . . 10 (har‘𝑥) ≠ ∅
35 ssn0 4308 . . . . . . . . . 10 (((har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) ∧ (har‘𝑥) ≠ ∅) → (𝑥 ∪ (har‘𝑥)) ≠ ∅)
3632, 34, 35mp2an 691 . . . . . . . . 9 (𝑥 ∪ (har‘𝑥)) ≠ ∅
37 eldifsn 4680 . . . . . . . . 9 ((𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) ↔ ((𝑥 ∪ (har‘𝑥)) ∈ V ∧ (𝑥 ∪ (har‘𝑥)) ≠ ∅))
3831, 36, 37mpbir2an 710 . . . . . . . 8 (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅})
3938a1i 11 . . . . . . 7 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}))
40 id 22 . . . . . . 7 ((Base “ Grp) = (V ∖ {∅}) → (Base “ Grp) = (V ∖ {∅}))
4139, 40eleqtrrd 2893 . . . . . 6 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp))
42 isnumbasgrp 40051 . . . . . 6 (𝑥 ∈ dom card ↔ (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp))
4341, 42sylibr 237 . . . . 5 ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ dom card)
4413a1i 11 . . . . 5 ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ V)
4543, 442thd 268 . . . 4 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∈ dom card ↔ 𝑥 ∈ V))
4645eqrdv 2796 . . 3 ((Base “ Grp) = (V ∖ {∅}) → dom card = V)
4729, 46impbii 212 . 2 (dom card = V ↔ (Base “ Grp) = (V ∖ {∅}))
481, 47bitri 278 1 (CHOICE ↔ (Base “ Grp) = (V ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  cdif 3878  cun 3879  wss 3881  c0 4243  {csn 4525  dom cdm 5519  cima 5522   Fn wfn 6319  cfv 6324  harchar 9004  cardccrd 9348  CHOICEwac 9526  Basecbs 16475  Grpcgrp 18095  Abelcabl 18899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seqom 8067  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-har 9005  df-wdom 9013  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-hash 13687  df-dvds 15600  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-gim 18391  df-gic 18392  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-rnghom 19463  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zn 20200  df-dsmm 20421  df-frlm 20436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator