Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfacbasgrp Structured version   Visualization version   GIF version

Theorem dfacbasgrp 43147
Description: A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
dfacbasgrp (CHOICE ↔ (Base “ Grp) = (V ∖ {∅}))

Proof of Theorem dfacbasgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac10 10029 . 2 (CHOICE ↔ dom card = V)
2 basfn 17124 . . . . . . . . . 10 Base Fn V
3 ssv 3959 . . . . . . . . . 10 Grp ⊆ V
4 fvelimab 6894 . . . . . . . . . 10 ((Base Fn V ∧ Grp ⊆ V) → (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥))
52, 3, 4mp2an 692 . . . . . . . . 9 (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥)
6 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑦) = (Base‘𝑦)
76grpbn0 18879 . . . . . . . . . . 11 (𝑦 ∈ Grp → (Base‘𝑦) ≠ ∅)
8 neeq1 2990 . . . . . . . . . . 11 ((Base‘𝑦) = 𝑥 → ((Base‘𝑦) ≠ ∅ ↔ 𝑥 ≠ ∅))
97, 8syl5ibcom 245 . . . . . . . . . 10 (𝑦 ∈ Grp → ((Base‘𝑦) = 𝑥𝑥 ≠ ∅))
109rexlimiv 3126 . . . . . . . . 9 (∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥𝑥 ≠ ∅)
115, 10sylbi 217 . . . . . . . 8 (𝑥 ∈ (Base “ Grp) → 𝑥 ≠ ∅)
1211adantl 481 . . . . . . 7 ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → 𝑥 ≠ ∅)
13 vex 3440 . . . . . . 7 𝑥 ∈ V
1412, 13jctil 519 . . . . . 6 ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → (𝑥 ∈ V ∧ 𝑥 ≠ ∅))
15 ablgrp 19698 . . . . . . . . 9 (𝑥 ∈ Abel → 𝑥 ∈ Grp)
1615ssriv 3938 . . . . . . . 8 Abel ⊆ Grp
17 imass2 6051 . . . . . . . 8 (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp))
1816, 17ax-mp 5 . . . . . . 7 (Base “ Abel) ⊆ (Base “ Grp)
19 simprl 770 . . . . . . . . 9 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ V)
20 simpl 482 . . . . . . . . 9 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → dom card = V)
2119, 20eleqtrrd 2834 . . . . . . . 8 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ dom card)
22 simprr 772 . . . . . . . 8 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
23 isnumbasgrplem3 43144 . . . . . . . 8 ((𝑥 ∈ dom card ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Base “ Abel))
2421, 22, 23syl2anc 584 . . . . . . 7 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Abel))
2518, 24sselid 3932 . . . . . 6 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Grp))
2614, 25impbida 800 . . . . 5 (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)))
27 eldifsn 4738 . . . . 5 (𝑥 ∈ (V ∖ {∅}) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅))
2826, 27bitr4di 289 . . . 4 (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ 𝑥 ∈ (V ∖ {∅})))
2928eqrdv 2729 . . 3 (dom card = V → (Base “ Grp) = (V ∖ {∅}))
30 fvex 6835 . . . . . . . . . 10 (har‘𝑥) ∈ V
3113, 30unex 7677 . . . . . . . . 9 (𝑥 ∪ (har‘𝑥)) ∈ V
32 ssun2 4129 . . . . . . . . . 10 (har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥))
33 harn0 43141 . . . . . . . . . . 11 (𝑥 ∈ V → (har‘𝑥) ≠ ∅)
3413, 33ax-mp 5 . . . . . . . . . 10 (har‘𝑥) ≠ ∅
35 ssn0 4354 . . . . . . . . . 10 (((har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) ∧ (har‘𝑥) ≠ ∅) → (𝑥 ∪ (har‘𝑥)) ≠ ∅)
3632, 34, 35mp2an 692 . . . . . . . . 9 (𝑥 ∪ (har‘𝑥)) ≠ ∅
37 eldifsn 4738 . . . . . . . . 9 ((𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) ↔ ((𝑥 ∪ (har‘𝑥)) ∈ V ∧ (𝑥 ∪ (har‘𝑥)) ≠ ∅))
3831, 36, 37mpbir2an 711 . . . . . . . 8 (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅})
3938a1i 11 . . . . . . 7 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}))
40 id 22 . . . . . . 7 ((Base “ Grp) = (V ∖ {∅}) → (Base “ Grp) = (V ∖ {∅}))
4139, 40eleqtrrd 2834 . . . . . 6 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp))
42 isnumbasgrp 43146 . . . . . 6 (𝑥 ∈ dom card ↔ (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp))
4341, 42sylibr 234 . . . . 5 ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ dom card)
4413a1i 11 . . . . 5 ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ V)
4543, 442thd 265 . . . 4 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∈ dom card ↔ 𝑥 ∈ V))
4645eqrdv 2729 . . 3 ((Base “ Grp) = (V ∖ {∅}) → dom card = V)
4729, 46impbii 209 . 2 (dom card = V ↔ (Base “ Grp) = (V ∖ {∅}))
481, 47bitri 275 1 (CHOICE ↔ (Base “ Grp) = (V ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  cdif 3899  cun 3900  wss 3902  c0 4283  {csn 4576  dom cdm 5616  cima 5619   Fn wfn 6476  cfv 6481  harchar 9442  cardccrd 9828  CHOICEwac 10006  Basecbs 17120  Grpcgrp 18846  Abelcabl 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-har 9443  df-wdom 9451  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-hash 14238  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19126  df-gim 19172  df-gic 19173  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-cring 20155  df-oppr 20256  df-dvdsr 20276  df-rhm 20391  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-lsp 20906  df-sra 21108  df-rgmod 21109  df-lidl 21146  df-rsp 21147  df-2idl 21188  df-cnfld 21293  df-zring 21385  df-zrh 21441  df-zn 21444  df-dsmm 21670  df-frlm 21685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator