| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfacbasgrp | Structured version Visualization version GIF version | ||
| Description: A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| Ref | Expression |
|---|---|
| dfacbasgrp | ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac10 10029 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
| 2 | basfn 17124 | . . . . . . . . . 10 ⊢ Base Fn V | |
| 3 | ssv 3959 | . . . . . . . . . 10 ⊢ Grp ⊆ V | |
| 4 | fvelimab 6894 | . . . . . . . . . 10 ⊢ ((Base Fn V ∧ Grp ⊆ V) → (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥)) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . . . 9 ⊢ (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥) |
| 6 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (Base‘𝑦) = (Base‘𝑦) | |
| 7 | 6 | grpbn0 18879 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ Grp → (Base‘𝑦) ≠ ∅) |
| 8 | neeq1 2990 | . . . . . . . . . . 11 ⊢ ((Base‘𝑦) = 𝑥 → ((Base‘𝑦) ≠ ∅ ↔ 𝑥 ≠ ∅)) | |
| 9 | 7, 8 | syl5ibcom 245 | . . . . . . . . . 10 ⊢ (𝑦 ∈ Grp → ((Base‘𝑦) = 𝑥 → 𝑥 ≠ ∅)) |
| 10 | 9 | rexlimiv 3126 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥 → 𝑥 ≠ ∅) |
| 11 | 5, 10 | sylbi 217 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base “ Grp) → 𝑥 ≠ ∅) |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → 𝑥 ≠ ∅) |
| 13 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 14 | 12, 13 | jctil 519 | . . . . . 6 ⊢ ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) |
| 15 | ablgrp 19698 | . . . . . . . . 9 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
| 16 | 15 | ssriv 3938 | . . . . . . . 8 ⊢ Abel ⊆ Grp |
| 17 | imass2 6051 | . . . . . . . 8 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
| 19 | simprl 770 | . . . . . . . . 9 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ V) | |
| 20 | simpl 482 | . . . . . . . . 9 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → dom card = V) | |
| 21 | 19, 20 | eleqtrrd 2834 | . . . . . . . 8 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ dom card) |
| 22 | simprr 772 | . . . . . . . 8 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅) | |
| 23 | isnumbasgrplem3 43144 | . . . . . . . 8 ⊢ ((𝑥 ∈ dom card ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Base “ Abel)) | |
| 24 | 21, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Abel)) |
| 25 | 18, 24 | sselid 3932 | . . . . . 6 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Grp)) |
| 26 | 14, 25 | impbida 800 | . . . . 5 ⊢ (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅))) |
| 27 | eldifsn 4738 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ {∅}) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) | |
| 28 | 26, 27 | bitr4di 289 | . . . 4 ⊢ (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ 𝑥 ∈ (V ∖ {∅}))) |
| 29 | 28 | eqrdv 2729 | . . 3 ⊢ (dom card = V → (Base “ Grp) = (V ∖ {∅})) |
| 30 | fvex 6835 | . . . . . . . . . 10 ⊢ (har‘𝑥) ∈ V | |
| 31 | 13, 30 | unex 7677 | . . . . . . . . 9 ⊢ (𝑥 ∪ (har‘𝑥)) ∈ V |
| 32 | ssun2 4129 | . . . . . . . . . 10 ⊢ (har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) | |
| 33 | harn0 43141 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ V → (har‘𝑥) ≠ ∅) | |
| 34 | 13, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ (har‘𝑥) ≠ ∅ |
| 35 | ssn0 4354 | . . . . . . . . . 10 ⊢ (((har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) ∧ (har‘𝑥) ≠ ∅) → (𝑥 ∪ (har‘𝑥)) ≠ ∅) | |
| 36 | 32, 34, 35 | mp2an 692 | . . . . . . . . 9 ⊢ (𝑥 ∪ (har‘𝑥)) ≠ ∅ |
| 37 | eldifsn 4738 | . . . . . . . . 9 ⊢ ((𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) ↔ ((𝑥 ∪ (har‘𝑥)) ∈ V ∧ (𝑥 ∪ (har‘𝑥)) ≠ ∅)) | |
| 38 | 31, 36, 37 | mpbir2an 711 | . . . . . . . 8 ⊢ (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) |
| 39 | 38 | a1i 11 | . . . . . . 7 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅})) |
| 40 | id 22 | . . . . . . 7 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (Base “ Grp) = (V ∖ {∅})) | |
| 41 | 39, 40 | eleqtrrd 2834 | . . . . . 6 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp)) |
| 42 | isnumbasgrp 43146 | . . . . . 6 ⊢ (𝑥 ∈ dom card ↔ (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp)) | |
| 43 | 41, 42 | sylibr 234 | . . . . 5 ⊢ ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ dom card) |
| 44 | 13 | a1i 11 | . . . . 5 ⊢ ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ V) |
| 45 | 43, 44 | 2thd 265 | . . . 4 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
| 46 | 45 | eqrdv 2729 | . . 3 ⊢ ((Base “ Grp) = (V ∖ {∅}) → dom card = V) |
| 47 | 29, 46 | impbii 209 | . 2 ⊢ (dom card = V ↔ (Base “ Grp) = (V ∖ {∅})) |
| 48 | 1, 47 | bitri 275 | 1 ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 Vcvv 3436 ∖ cdif 3899 ∪ cun 3900 ⊆ wss 3902 ∅c0 4283 {csn 4576 dom cdm 5616 “ cima 5619 Fn wfn 6476 ‘cfv 6481 harchar 9442 cardccrd 9828 CHOICEwac 10006 Basecbs 17120 Grpcgrp 18846 Abelcabl 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seqom 8367 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-inf 9327 df-oi 9396 df-har 9443 df-wdom 9451 df-dju 9794 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-hash 14238 df-dvds 16164 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-imas 17412 df-qus 17413 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19126 df-gim 19172 df-gic 19173 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-cring 20155 df-oppr 20256 df-dvdsr 20276 df-rhm 20391 df-subrng 20462 df-subrg 20486 df-lmod 20796 df-lss 20866 df-lsp 20906 df-sra 21108 df-rgmod 21109 df-lidl 21146 df-rsp 21147 df-2idl 21188 df-cnfld 21293 df-zring 21385 df-zrh 21441 df-zn 21444 df-dsmm 21670 df-frlm 21685 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |