Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfacbasgrp Structured version   Visualization version   GIF version

Theorem dfacbasgrp 42596
Description: A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
dfacbasgrp (CHOICE ↔ (Base “ Grp) = (V ∖ {∅}))

Proof of Theorem dfacbasgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac10 10158 . 2 (CHOICE ↔ dom card = V)
2 basfn 17181 . . . . . . . . . 10 Base Fn V
3 ssv 3997 . . . . . . . . . 10 Grp ⊆ V
4 fvelimab 6965 . . . . . . . . . 10 ((Base Fn V ∧ Grp ⊆ V) → (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥))
52, 3, 4mp2an 690 . . . . . . . . 9 (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥)
6 eqid 2725 . . . . . . . . . . . 12 (Base‘𝑦) = (Base‘𝑦)
76grpbn0 18925 . . . . . . . . . . 11 (𝑦 ∈ Grp → (Base‘𝑦) ≠ ∅)
8 neeq1 2993 . . . . . . . . . . 11 ((Base‘𝑦) = 𝑥 → ((Base‘𝑦) ≠ ∅ ↔ 𝑥 ≠ ∅))
97, 8syl5ibcom 244 . . . . . . . . . 10 (𝑦 ∈ Grp → ((Base‘𝑦) = 𝑥𝑥 ≠ ∅))
109rexlimiv 3138 . . . . . . . . 9 (∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥𝑥 ≠ ∅)
115, 10sylbi 216 . . . . . . . 8 (𝑥 ∈ (Base “ Grp) → 𝑥 ≠ ∅)
1211adantl 480 . . . . . . 7 ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → 𝑥 ≠ ∅)
13 vex 3467 . . . . . . 7 𝑥 ∈ V
1412, 13jctil 518 . . . . . 6 ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → (𝑥 ∈ V ∧ 𝑥 ≠ ∅))
15 ablgrp 19742 . . . . . . . . 9 (𝑥 ∈ Abel → 𝑥 ∈ Grp)
1615ssriv 3976 . . . . . . . 8 Abel ⊆ Grp
17 imass2 6101 . . . . . . . 8 (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp))
1816, 17ax-mp 5 . . . . . . 7 (Base “ Abel) ⊆ (Base “ Grp)
19 simprl 769 . . . . . . . . 9 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ V)
20 simpl 481 . . . . . . . . 9 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → dom card = V)
2119, 20eleqtrrd 2828 . . . . . . . 8 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ dom card)
22 simprr 771 . . . . . . . 8 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
23 isnumbasgrplem3 42593 . . . . . . . 8 ((𝑥 ∈ dom card ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Base “ Abel))
2421, 22, 23syl2anc 582 . . . . . . 7 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Abel))
2518, 24sselid 3970 . . . . . 6 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Grp))
2614, 25impbida 799 . . . . 5 (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)))
27 eldifsn 4786 . . . . 5 (𝑥 ∈ (V ∖ {∅}) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅))
2826, 27bitr4di 288 . . . 4 (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ 𝑥 ∈ (V ∖ {∅})))
2928eqrdv 2723 . . 3 (dom card = V → (Base “ Grp) = (V ∖ {∅}))
30 fvex 6904 . . . . . . . . . 10 (har‘𝑥) ∈ V
3113, 30unex 7745 . . . . . . . . 9 (𝑥 ∪ (har‘𝑥)) ∈ V
32 ssun2 4167 . . . . . . . . . 10 (har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥))
33 harn0 42590 . . . . . . . . . . 11 (𝑥 ∈ V → (har‘𝑥) ≠ ∅)
3413, 33ax-mp 5 . . . . . . . . . 10 (har‘𝑥) ≠ ∅
35 ssn0 4396 . . . . . . . . . 10 (((har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) ∧ (har‘𝑥) ≠ ∅) → (𝑥 ∪ (har‘𝑥)) ≠ ∅)
3632, 34, 35mp2an 690 . . . . . . . . 9 (𝑥 ∪ (har‘𝑥)) ≠ ∅
37 eldifsn 4786 . . . . . . . . 9 ((𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) ↔ ((𝑥 ∪ (har‘𝑥)) ∈ V ∧ (𝑥 ∪ (har‘𝑥)) ≠ ∅))
3831, 36, 37mpbir2an 709 . . . . . . . 8 (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅})
3938a1i 11 . . . . . . 7 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}))
40 id 22 . . . . . . 7 ((Base “ Grp) = (V ∖ {∅}) → (Base “ Grp) = (V ∖ {∅}))
4139, 40eleqtrrd 2828 . . . . . 6 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp))
42 isnumbasgrp 42595 . . . . . 6 (𝑥 ∈ dom card ↔ (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp))
4341, 42sylibr 233 . . . . 5 ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ dom card)
4413a1i 11 . . . . 5 ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ V)
4543, 442thd 264 . . . 4 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∈ dom card ↔ 𝑥 ∈ V))
4645eqrdv 2723 . . 3 ((Base “ Grp) = (V ∖ {∅}) → dom card = V)
4729, 46impbii 208 . 2 (dom card = V ↔ (Base “ Grp) = (V ∖ {∅}))
481, 47bitri 274 1 (CHOICE ↔ (Base “ Grp) = (V ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2930  wrex 3060  Vcvv 3463  cdif 3937  cun 3938  wss 3940  c0 4318  {csn 4624  dom cdm 5672  cima 5675   Fn wfn 6537  cfv 6542  harchar 9577  cardccrd 9956  CHOICEwac 10136  Basecbs 17177  Grpcgrp 18892  Abelcabl 19738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215  ax-mulf 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-tpos 8228  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-seqom 8465  df-1o 8483  df-2o 8484  df-oadd 8487  df-omul 8488  df-er 8721  df-ec 8723  df-qs 8727  df-map 8843  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-sup 9463  df-inf 9464  df-oi 9531  df-har 9578  df-wdom 9586  df-dju 9922  df-card 9960  df-acn 9963  df-ac 10137  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-rp 13005  df-fz 13515  df-fzo 13658  df-fl 13787  df-mod 13865  df-seq 13997  df-hash 14320  df-dvds 16229  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-starv 17245  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-unif 17253  df-hom 17254  df-cco 17255  df-0g 17420  df-prds 17426  df-pws 17428  df-imas 17487  df-qus 17488  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-mhm 18737  df-grp 18895  df-minusg 18896  df-sbg 18897  df-mulg 19026  df-subg 19080  df-nsg 19081  df-eqg 19082  df-ghm 19170  df-gim 19215  df-gic 19216  df-cmn 19739  df-abl 19740  df-mgp 20077  df-rng 20095  df-ur 20124  df-ring 20177  df-cring 20178  df-oppr 20275  df-dvdsr 20298  df-rhm 20413  df-subrng 20485  df-subrg 20510  df-lmod 20747  df-lss 20818  df-lsp 20858  df-sra 21060  df-rgmod 21061  df-lidl 21106  df-rsp 21107  df-2idl 21146  df-cnfld 21282  df-zring 21375  df-zrh 21431  df-zn 21434  df-dsmm 21668  df-frlm 21683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator