Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfacbasgrp | Structured version Visualization version GIF version |
Description: A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
Ref | Expression |
---|---|
dfacbasgrp | ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac10 9824 | . 2 ⊢ (CHOICE ↔ dom card = V) | |
2 | basfn 16844 | . . . . . . . . . 10 ⊢ Base Fn V | |
3 | ssv 3941 | . . . . . . . . . 10 ⊢ Grp ⊆ V | |
4 | fvelimab 6823 | . . . . . . . . . 10 ⊢ ((Base Fn V ∧ Grp ⊆ V) → (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥)) | |
5 | 2, 3, 4 | mp2an 688 | . . . . . . . . 9 ⊢ (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥) |
6 | eqid 2738 | . . . . . . . . . . . 12 ⊢ (Base‘𝑦) = (Base‘𝑦) | |
7 | 6 | grpbn0 18523 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ Grp → (Base‘𝑦) ≠ ∅) |
8 | neeq1 3005 | . . . . . . . . . . 11 ⊢ ((Base‘𝑦) = 𝑥 → ((Base‘𝑦) ≠ ∅ ↔ 𝑥 ≠ ∅)) | |
9 | 7, 8 | syl5ibcom 244 | . . . . . . . . . 10 ⊢ (𝑦 ∈ Grp → ((Base‘𝑦) = 𝑥 → 𝑥 ≠ ∅)) |
10 | 9 | rexlimiv 3208 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥 → 𝑥 ≠ ∅) |
11 | 5, 10 | sylbi 216 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base “ Grp) → 𝑥 ≠ ∅) |
12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → 𝑥 ≠ ∅) |
13 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
14 | 12, 13 | jctil 519 | . . . . . 6 ⊢ ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) |
15 | ablgrp 19306 | . . . . . . . . 9 ⊢ (𝑥 ∈ Abel → 𝑥 ∈ Grp) | |
16 | 15 | ssriv 3921 | . . . . . . . 8 ⊢ Abel ⊆ Grp |
17 | imass2 5999 | . . . . . . . 8 ⊢ (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp)) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ (Base “ Abel) ⊆ (Base “ Grp) |
19 | simprl 767 | . . . . . . . . 9 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ V) | |
20 | simpl 482 | . . . . . . . . 9 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → dom card = V) | |
21 | 19, 20 | eleqtrrd 2842 | . . . . . . . 8 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ dom card) |
22 | simprr 769 | . . . . . . . 8 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅) | |
23 | isnumbasgrplem3 40846 | . . . . . . . 8 ⊢ ((𝑥 ∈ dom card ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Base “ Abel)) | |
24 | 21, 22, 23 | syl2anc 583 | . . . . . . 7 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Abel)) |
25 | 18, 24 | sselid 3915 | . . . . . 6 ⊢ ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Grp)) |
26 | 14, 25 | impbida 797 | . . . . 5 ⊢ (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅))) |
27 | eldifsn 4717 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ {∅}) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) | |
28 | 26, 27 | bitr4di 288 | . . . 4 ⊢ (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ 𝑥 ∈ (V ∖ {∅}))) |
29 | 28 | eqrdv 2736 | . . 3 ⊢ (dom card = V → (Base “ Grp) = (V ∖ {∅})) |
30 | fvex 6769 | . . . . . . . . . 10 ⊢ (har‘𝑥) ∈ V | |
31 | 13, 30 | unex 7574 | . . . . . . . . 9 ⊢ (𝑥 ∪ (har‘𝑥)) ∈ V |
32 | ssun2 4103 | . . . . . . . . . 10 ⊢ (har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) | |
33 | harn0 40843 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ V → (har‘𝑥) ≠ ∅) | |
34 | 13, 33 | ax-mp 5 | . . . . . . . . . 10 ⊢ (har‘𝑥) ≠ ∅ |
35 | ssn0 4331 | . . . . . . . . . 10 ⊢ (((har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) ∧ (har‘𝑥) ≠ ∅) → (𝑥 ∪ (har‘𝑥)) ≠ ∅) | |
36 | 32, 34, 35 | mp2an 688 | . . . . . . . . 9 ⊢ (𝑥 ∪ (har‘𝑥)) ≠ ∅ |
37 | eldifsn 4717 | . . . . . . . . 9 ⊢ ((𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) ↔ ((𝑥 ∪ (har‘𝑥)) ∈ V ∧ (𝑥 ∪ (har‘𝑥)) ≠ ∅)) | |
38 | 31, 36, 37 | mpbir2an 707 | . . . . . . . 8 ⊢ (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) |
39 | 38 | a1i 11 | . . . . . . 7 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅})) |
40 | id 22 | . . . . . . 7 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (Base “ Grp) = (V ∖ {∅})) | |
41 | 39, 40 | eleqtrrd 2842 | . . . . . 6 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp)) |
42 | isnumbasgrp 40848 | . . . . . 6 ⊢ (𝑥 ∈ dom card ↔ (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp)) | |
43 | 41, 42 | sylibr 233 | . . . . 5 ⊢ ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ dom card) |
44 | 13 | a1i 11 | . . . . 5 ⊢ ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ V) |
45 | 43, 44 | 2thd 264 | . . . 4 ⊢ ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∈ dom card ↔ 𝑥 ∈ V)) |
46 | 45 | eqrdv 2736 | . . 3 ⊢ ((Base “ Grp) = (V ∖ {∅}) → dom card = V) |
47 | 29, 46 | impbii 208 | . 2 ⊢ (dom card = V ↔ (Base “ Grp) = (V ∖ {∅})) |
48 | 1, 47 | bitri 274 | 1 ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 {csn 4558 dom cdm 5580 “ cima 5583 Fn wfn 6413 ‘cfv 6418 harchar 9245 cardccrd 9624 CHOICEwac 9802 Basecbs 16840 Grpcgrp 18492 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seqom 8249 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-inf 9132 df-oi 9199 df-har 9246 df-wdom 9254 df-dju 9590 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-hash 13973 df-dvds 15892 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-nsg 18668 df-eqg 18669 df-ghm 18747 df-gim 18790 df-gic 18791 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-rnghom 19874 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-rsp 20352 df-2idl 20416 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-zn 20620 df-dsmm 20849 df-frlm 20864 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |