Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfacbasgrp Structured version   Visualization version   GIF version

Theorem dfacbasgrp 43057
Description: A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
dfacbasgrp (CHOICE ↔ (Base “ Grp) = (V ∖ {∅}))

Proof of Theorem dfacbasgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac10 10144 . 2 (CHOICE ↔ dom card = V)
2 basfn 17217 . . . . . . . . . 10 Base Fn V
3 ssv 3981 . . . . . . . . . 10 Grp ⊆ V
4 fvelimab 6947 . . . . . . . . . 10 ((Base Fn V ∧ Grp ⊆ V) → (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥))
52, 3, 4mp2an 692 . . . . . . . . 9 (𝑥 ∈ (Base “ Grp) ↔ ∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥)
6 eqid 2734 . . . . . . . . . . . 12 (Base‘𝑦) = (Base‘𝑦)
76grpbn0 18934 . . . . . . . . . . 11 (𝑦 ∈ Grp → (Base‘𝑦) ≠ ∅)
8 neeq1 2993 . . . . . . . . . . 11 ((Base‘𝑦) = 𝑥 → ((Base‘𝑦) ≠ ∅ ↔ 𝑥 ≠ ∅))
97, 8syl5ibcom 245 . . . . . . . . . 10 (𝑦 ∈ Grp → ((Base‘𝑦) = 𝑥𝑥 ≠ ∅))
109rexlimiv 3132 . . . . . . . . 9 (∃𝑦 ∈ Grp (Base‘𝑦) = 𝑥𝑥 ≠ ∅)
115, 10sylbi 217 . . . . . . . 8 (𝑥 ∈ (Base “ Grp) → 𝑥 ≠ ∅)
1211adantl 481 . . . . . . 7 ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → 𝑥 ≠ ∅)
13 vex 3461 . . . . . . 7 𝑥 ∈ V
1412, 13jctil 519 . . . . . 6 ((dom card = V ∧ 𝑥 ∈ (Base “ Grp)) → (𝑥 ∈ V ∧ 𝑥 ≠ ∅))
15 ablgrp 19751 . . . . . . . . 9 (𝑥 ∈ Abel → 𝑥 ∈ Grp)
1615ssriv 3960 . . . . . . . 8 Abel ⊆ Grp
17 imass2 6086 . . . . . . . 8 (Abel ⊆ Grp → (Base “ Abel) ⊆ (Base “ Grp))
1816, 17ax-mp 5 . . . . . . 7 (Base “ Abel) ⊆ (Base “ Grp)
19 simprl 770 . . . . . . . . 9 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ V)
20 simpl 482 . . . . . . . . 9 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → dom card = V)
2119, 20eleqtrrd 2836 . . . . . . . 8 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ dom card)
22 simprr 772 . . . . . . . 8 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
23 isnumbasgrplem3 43054 . . . . . . . 8 ((𝑥 ∈ dom card ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (Base “ Abel))
2421, 22, 23syl2anc 584 . . . . . . 7 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Abel))
2518, 24sselid 3954 . . . . . 6 ((dom card = V ∧ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Base “ Grp))
2614, 25impbida 800 . . . . 5 (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅)))
27 eldifsn 4759 . . . . 5 (𝑥 ∈ (V ∖ {∅}) ↔ (𝑥 ∈ V ∧ 𝑥 ≠ ∅))
2826, 27bitr4di 289 . . . 4 (dom card = V → (𝑥 ∈ (Base “ Grp) ↔ 𝑥 ∈ (V ∖ {∅})))
2928eqrdv 2732 . . 3 (dom card = V → (Base “ Grp) = (V ∖ {∅}))
30 fvex 6885 . . . . . . . . . 10 (har‘𝑥) ∈ V
3113, 30unex 7732 . . . . . . . . 9 (𝑥 ∪ (har‘𝑥)) ∈ V
32 ssun2 4152 . . . . . . . . . 10 (har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥))
33 harn0 43051 . . . . . . . . . . 11 (𝑥 ∈ V → (har‘𝑥) ≠ ∅)
3413, 33ax-mp 5 . . . . . . . . . 10 (har‘𝑥) ≠ ∅
35 ssn0 4377 . . . . . . . . . 10 (((har‘𝑥) ⊆ (𝑥 ∪ (har‘𝑥)) ∧ (har‘𝑥) ≠ ∅) → (𝑥 ∪ (har‘𝑥)) ≠ ∅)
3632, 34, 35mp2an 692 . . . . . . . . 9 (𝑥 ∪ (har‘𝑥)) ≠ ∅
37 eldifsn 4759 . . . . . . . . 9 ((𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}) ↔ ((𝑥 ∪ (har‘𝑥)) ∈ V ∧ (𝑥 ∪ (har‘𝑥)) ≠ ∅))
3831, 36, 37mpbir2an 711 . . . . . . . 8 (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅})
3938a1i 11 . . . . . . 7 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (V ∖ {∅}))
40 id 22 . . . . . . 7 ((Base “ Grp) = (V ∖ {∅}) → (Base “ Grp) = (V ∖ {∅}))
4139, 40eleqtrrd 2836 . . . . . 6 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp))
42 isnumbasgrp 43056 . . . . . 6 (𝑥 ∈ dom card ↔ (𝑥 ∪ (har‘𝑥)) ∈ (Base “ Grp))
4341, 42sylibr 234 . . . . 5 ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ dom card)
4413a1i 11 . . . . 5 ((Base “ Grp) = (V ∖ {∅}) → 𝑥 ∈ V)
4543, 442thd 265 . . . 4 ((Base “ Grp) = (V ∖ {∅}) → (𝑥 ∈ dom card ↔ 𝑥 ∈ V))
4645eqrdv 2732 . . 3 ((Base “ Grp) = (V ∖ {∅}) → dom card = V)
4729, 46impbii 209 . 2 (dom card = V ↔ (Base “ Grp) = (V ∖ {∅}))
481, 47bitri 275 1 (CHOICE ↔ (Base “ Grp) = (V ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  Vcvv 3457  cdif 3921  cun 3922  wss 3924  c0 4306  {csn 4599  dom cdm 5651  cima 5654   Fn wfn 6522  cfv 6527  harchar 9562  cardccrd 9941  CHOICEwac 10121  Basecbs 17213  Grpcgrp 18901  Abelcabl 19747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-inf2 9647  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199  ax-addf 11200  ax-mulf 11201
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-supp 8154  df-tpos 8219  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-seqom 8456  df-1o 8474  df-2o 8475  df-oadd 8478  df-omul 8479  df-er 8713  df-ec 8715  df-qs 8719  df-map 8836  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9368  df-sup 9448  df-inf 9449  df-oi 9516  df-har 9563  df-wdom 9571  df-dju 9907  df-card 9945  df-acn 9948  df-ac 10122  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-rp 13001  df-fz 13514  df-fzo 13661  df-fl 13798  df-mod 13876  df-seq 14009  df-hash 14337  df-dvds 16258  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-starv 17271  df-sca 17272  df-vsca 17273  df-ip 17274  df-tset 17275  df-ple 17276  df-ds 17278  df-unif 17279  df-hom 17280  df-cco 17281  df-0g 17440  df-prds 17446  df-pws 17448  df-imas 17507  df-qus 17508  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18746  df-grp 18904  df-minusg 18905  df-sbg 18906  df-mulg 19036  df-subg 19091  df-nsg 19092  df-eqg 19093  df-ghm 19181  df-gim 19227  df-gic 19228  df-cmn 19748  df-abl 19749  df-mgp 20086  df-rng 20098  df-ur 20127  df-ring 20180  df-cring 20181  df-oppr 20282  df-dvdsr 20302  df-rhm 20417  df-subrng 20491  df-subrg 20515  df-lmod 20804  df-lss 20874  df-lsp 20914  df-sra 21116  df-rgmod 21117  df-lidl 21154  df-rsp 21155  df-2idl 21196  df-cnfld 21301  df-zring 21393  df-zrh 21449  df-zn 21452  df-dsmm 21677  df-frlm 21692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator