Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucelon | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.) |
Ref | Expression |
---|---|
sucelon | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 7649 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | sucexb 7644 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | anbi12i 626 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
4 | elon2 6274 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
5 | elon2 6274 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
6 | 3, 4, 5 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 Vcvv 3430 Ord word 6262 Oncon0 6263 suc csuc 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-ord 6266 df-on 6267 df-suc 6269 |
This theorem is referenced by: onsucmin 7656 tfindsg2 7696 oaordi 8353 oalimcl 8367 omlimcl 8385 omeulem1 8389 oeordsuc 8401 infensuc 8907 cantnflem1b 9405 cantnflem1 9408 r1ordg 9520 alephnbtwn 9811 cfsuc 9997 alephsuc3 10320 alephreg 10322 naddcllem 33810 bdayimaon 33875 nosupbnd1lem1 33890 nosupbnd1 33896 nosupbnd2lem1 33897 nosupbnd2 33898 noinfno 33900 noinfres 33904 noinfbnd1lem1 33905 noinfbnd1 33911 noinfbnd2lem1 33912 noinfbnd2 33913 noeta2 33958 etasslt2 33987 |
Copyright terms: Public domain | W3C validator |