Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucelon | Structured version Visualization version GIF version |
Description: The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.) |
Ref | Expression |
---|---|
sucelon | ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsuc 7693 | . . 3 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
2 | sucexb 7686 | . . 3 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ∈ V) ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) |
4 | elon2 6292 | . 2 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
5 | elon2 6292 | . 2 ⊢ (suc 𝐴 ∈ On ↔ (Ord suc 𝐴 ∧ suc 𝐴 ∈ V)) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2104 Vcvv 3437 Ord word 6280 Oncon0 6281 suc csuc 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-on 6285 df-suc 6287 |
This theorem is referenced by: onsucmin 7700 tfindsg2 7740 oaordi 8408 oalimcl 8422 omlimcl 8440 omeulem1 8444 oeordsuc 8456 infensuc 8980 cantnflem1b 9492 cantnflem1 9495 r1ordg 9584 alephnbtwn 9877 cfsuc 10063 alephsuc3 10386 alephreg 10388 naddcllem 33880 bdayimaon 33945 nosupbnd1lem1 33960 nosupbnd1 33966 nosupbnd2lem1 33967 nosupbnd2 33968 noinfno 33970 noinfres 33974 noinfbnd1lem1 33975 noinfbnd1 33981 noinfbnd2lem1 33982 noinfbnd2 33983 noeta2 34028 etasslt2 34057 |
Copyright terms: Public domain | W3C validator |