Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinffin | Structured version Visualization version GIF version |
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology only if 𝐴 is finite. (Contributed by ML, 17-Jul-2020.) |
Ref | Expression |
---|---|
topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
Ref | Expression |
---|---|
topdifinffin | ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topdifinf.t | . . 3 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
2 | difeq2 4047 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
3 | 2 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑦) ∈ Fin)) |
4 | 3 | notbid 317 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ (𝐴 ∖ 𝑥) ∈ Fin ↔ ¬ (𝐴 ∖ 𝑦) ∈ Fin)) |
5 | eqeq1 2742 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
6 | eqeq1 2742 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
7 | 5, 6 | orbi12d 915 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑦 = ∅ ∨ 𝑦 = 𝐴))) |
8 | 4, 7 | orbi12d 915 | . . . 4 ⊢ (𝑥 = 𝑦 → ((¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴 ∖ 𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴)))) |
9 | 8 | cbvrabv 3416 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))} |
10 | 1, 9 | eqtri 2766 | . 2 ⊢ 𝑇 = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))} |
11 | 10 | topdifinffinlem 35445 | 1 ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 ‘cfv 6418 Fincfn 8691 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 df-topgen 17071 df-top 21951 df-topon 21968 |
This theorem is referenced by: topdifinf 35447 |
Copyright terms: Public domain | W3C validator |