Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinffin Structured version   Visualization version   GIF version

Theorem topdifinffin 37329
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology only if 𝐴 is finite. (Contributed by ML, 17-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Assertion
Ref Expression
topdifinffin (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem topdifinffin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 topdifinf.t . . 3 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
2 difeq2 4079 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
32eleq1d 2813 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
43notbid 318 . . . . 5 (𝑥 = 𝑦 → (¬ (𝐴𝑥) ∈ Fin ↔ ¬ (𝐴𝑦) ∈ Fin))
5 eqeq1 2733 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
6 eqeq1 2733 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
75, 6orbi12d 918 . . . . 5 (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑦 = ∅ ∨ 𝑦 = 𝐴)))
84, 7orbi12d 918 . . . 4 (𝑥 = 𝑦 → ((¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))))
98cbvrabv 3413 . . 3 {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))}
101, 9eqtri 2752 . 2 𝑇 = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))}
1110topdifinffinlem 37328 1 (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1540  wcel 2109  {crab 3402  cdif 3908  c0 4292  𝒫 cpw 4559  cfv 6499  Fincfn 8895  TopOnctopon 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-en 8896  df-fin 8899  df-topgen 17382  df-top 22814  df-topon 22831
This theorem is referenced by:  topdifinf  37330
  Copyright terms: Public domain W3C validator