Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinffin Structured version   Visualization version   GIF version

Theorem topdifinffin 34631
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology only if 𝐴 is finite. (Contributed by ML, 17-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Assertion
Ref Expression
topdifinffin (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem topdifinffin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 topdifinf.t . . 3 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
2 difeq2 4095 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
32eleq1d 2899 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
43notbid 320 . . . . 5 (𝑥 = 𝑦 → (¬ (𝐴𝑥) ∈ Fin ↔ ¬ (𝐴𝑦) ∈ Fin))
5 eqeq1 2827 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
6 eqeq1 2827 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
75, 6orbi12d 915 . . . . 5 (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑦 = ∅ ∨ 𝑦 = 𝐴)))
84, 7orbi12d 915 . . . 4 (𝑥 = 𝑦 → ((¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))))
98cbvrabv 3493 . . 3 {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))}
101, 9eqtri 2846 . 2 𝑇 = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))}
1110topdifinffinlem 34630 1 (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843   = wceq 1537  wcel 2114  {crab 3144  cdif 3935  c0 4293  𝒫 cpw 4541  cfv 6357  Fincfn 8511  TopOnctopon 21520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-fin 8515  df-topgen 16719  df-top 21504  df-topon 21521
This theorem is referenced by:  topdifinf  34632
  Copyright terms: Public domain W3C validator