| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinffin | Structured version Visualization version GIF version | ||
| Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology only if 𝐴 is finite. (Contributed by ML, 17-Jul-2020.) |
| Ref | Expression |
|---|---|
| topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
| Ref | Expression |
|---|---|
| topdifinffin | ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topdifinf.t | . . 3 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
| 2 | difeq2 4079 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
| 3 | 2 | eleq1d 2813 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑦) ∈ Fin)) |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ (𝐴 ∖ 𝑥) ∈ Fin ↔ ¬ (𝐴 ∖ 𝑦) ∈ Fin)) |
| 5 | eqeq1 2733 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
| 6 | eqeq1 2733 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 7 | 5, 6 | orbi12d 918 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑦 = ∅ ∨ 𝑦 = 𝐴))) |
| 8 | 4, 7 | orbi12d 918 | . . . 4 ⊢ (𝑥 = 𝑦 → ((¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴 ∖ 𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴)))) |
| 9 | 8 | cbvrabv 3413 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))} |
| 10 | 1, 9 | eqtri 2752 | . 2 ⊢ 𝑇 = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))} |
| 11 | 10 | topdifinffinlem 37328 | 1 ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 ∅c0 4292 𝒫 cpw 4559 ‘cfv 6499 Fincfn 8895 TopOnctopon 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-en 8896 df-fin 8899 df-topgen 17382 df-top 22814 df-topon 22831 |
| This theorem is referenced by: topdifinf 37330 |
| Copyright terms: Public domain | W3C validator |