Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinffin Structured version   Visualization version   GIF version

Theorem topdifinffin 34765
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology only if 𝐴 is finite. (Contributed by ML, 17-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
Assertion
Ref Expression
topdifinffin (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem topdifinffin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 topdifinf.t . . 3 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))}
2 difeq2 4044 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
32eleq1d 2874 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
43notbid 321 . . . . 5 (𝑥 = 𝑦 → (¬ (𝐴𝑥) ∈ Fin ↔ ¬ (𝐴𝑦) ∈ Fin))
5 eqeq1 2802 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
6 eqeq1 2802 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
75, 6orbi12d 916 . . . . 5 (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑦 = ∅ ∨ 𝑦 = 𝐴)))
84, 7orbi12d 916 . . . 4 (𝑥 = 𝑦 → ((¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))))
98cbvrabv 3439 . . 3 {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))}
101, 9eqtri 2821 . 2 𝑇 = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))}
1110topdifinffinlem 34764 1 (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844   = wceq 1538  wcel 2111  {crab 3110  cdif 3878  c0 4243  𝒫 cpw 4497  cfv 6324  Fincfn 8492  TopOnctopon 21515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-topgen 16709  df-top 21499  df-topon 21516
This theorem is referenced by:  topdifinf  34766
  Copyright terms: Public domain W3C validator