![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topdifinffin | Structured version Visualization version GIF version |
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets 𝑥 of 𝐴 such that the complement of 𝑥 in 𝐴 is infinite, or 𝑥 is the empty set, or 𝑥 is all of 𝐴, is a topology only if 𝐴 is finite. (Contributed by ML, 17-Jul-2020.) |
Ref | Expression |
---|---|
topdifinf.t | ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} |
Ref | Expression |
---|---|
topdifinffin | ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topdifinf.t | . . 3 ⊢ 𝑇 = {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} | |
2 | difeq2 3950 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) | |
3 | 2 | eleq1d 2892 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑦) ∈ Fin)) |
4 | 3 | notbid 310 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ (𝐴 ∖ 𝑥) ∈ Fin ↔ ¬ (𝐴 ∖ 𝑦) ∈ Fin)) |
5 | eqeq1 2830 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) | |
6 | eqeq1 2830 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
7 | 5, 6 | orbi12d 949 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 = ∅ ∨ 𝑥 = 𝐴) ↔ (𝑦 = ∅ ∨ 𝑦 = 𝐴))) |
8 | 4, 7 | orbi12d 949 | . . . 4 ⊢ (𝑥 = 𝑦 → ((¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴)) ↔ (¬ (𝐴 ∖ 𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴)))) |
9 | 8 | cbvrabv 3413 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑥) ∈ Fin ∨ (𝑥 = ∅ ∨ 𝑥 = 𝐴))} = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))} |
10 | 1, 9 | eqtri 2850 | . 2 ⊢ 𝑇 = {𝑦 ∈ 𝒫 𝐴 ∣ (¬ (𝐴 ∖ 𝑦) ∈ Fin ∨ (𝑦 = ∅ ∨ 𝑦 = 𝐴))} |
11 | 10 | topdifinffinlem 33741 | 1 ⊢ (𝑇 ∈ (TopOn‘𝐴) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 880 = wceq 1658 ∈ wcel 2166 {crab 3122 ∖ cdif 3796 ∅c0 4145 𝒫 cpw 4379 ‘cfv 6124 Fincfn 8223 TopOnctopon 21086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-en 8224 df-fin 8227 df-topgen 16458 df-top 21070 df-topon 21087 |
This theorem is referenced by: topdifinf 33743 |
Copyright terms: Public domain | W3C validator |