MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukey Structured version   Visualization version   GIF version

Theorem ttukey 10532
Description: The Teichmüller-Tukey Lemma, an Axiom of Choice equivalent. If 𝐴 is a nonempty collection of finite character, then 𝐴 has a maximal element with respect to inclusion. Here "finite character" means that 𝑥𝐴 iff every finite subset of 𝑥 is in 𝐴. (Contributed by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
ttukey.1 𝐴 ∈ V
Assertion
Ref Expression
ttukey ((𝐴 ≠ ∅ ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem ttukey
StepHypRef Expression
1 ttukey.1 . . . 4 𝐴 ∈ V
21uniex 7735 . . 3 𝐴 ∈ V
3 numth3 10484 . . 3 ( 𝐴 ∈ V → 𝐴 ∈ dom card)
42, 3ax-mp 5 . 2 𝐴 ∈ dom card
5 ttukeyg 10531 . 2 (( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
64, 5mp3an1 1450 1 ((𝐴 ≠ ∅ ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926  wpss 3927  c0 4308  𝒫 cpw 4575   cuni 4883  dom cdm 5654  Fincfn 8959  cardccrd 9949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-ac2 10477
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-fin 8963  df-card 9953  df-ac 10130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator