![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttukey | Structured version Visualization version GIF version |
Description: The TeichmΓΌller-Tukey Lemma, an Axiom of Choice equivalent. If π΄ is a nonempty collection of finite character, then π΄ has a maximal element with respect to inclusion. Here "finite character" means that π₯ β π΄ iff every finite subset of π₯ is in π΄. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
ttukey.1 | β’ π΄ β V |
Ref | Expression |
---|---|
ttukey | β’ ((π΄ β β β§ βπ₯(π₯ β π΄ β (π« π₯ β© Fin) β π΄)) β βπ₯ β π΄ βπ¦ β π΄ Β¬ π₯ β π¦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ttukey.1 | . . . 4 β’ π΄ β V | |
2 | 1 | uniex 7735 | . . 3 β’ βͺ π΄ β V |
3 | numth3 10471 | . . 3 β’ (βͺ π΄ β V β βͺ π΄ β dom card) | |
4 | 2, 3 | ax-mp 5 | . 2 β’ βͺ π΄ β dom card |
5 | ttukeyg 10518 | . 2 β’ ((βͺ π΄ β dom card β§ π΄ β β β§ βπ₯(π₯ β π΄ β (π« π₯ β© Fin) β π΄)) β βπ₯ β π΄ βπ¦ β π΄ Β¬ π₯ β π¦) | |
6 | 4, 5 | mp3an1 1447 | 1 β’ ((π΄ β β β§ βπ₯(π₯ β π΄ β (π« π₯ β© Fin) β π΄)) β βπ₯ β π΄ βπ¦ β π΄ Β¬ π₯ β π¦) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 βwal 1538 β wcel 2105 β wne 2939 βwral 3060 βwrex 3069 Vcvv 3473 β© cin 3947 β wss 3948 β wpss 3949 β c0 4322 π« cpw 4602 βͺ cuni 4908 dom cdm 5676 Fincfn 8945 cardccrd 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-ac2 10464 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-fin 8949 df-card 9940 df-ac 10117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |