Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo2 Structured version   Visualization version   GIF version

Theorem lptioo2 42790
Description: The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo2.1 𝐽 = (topGen‘ran (,))
lptioo2.2 (𝜑𝐴 ∈ ℝ*)
lptioo2.3 (𝜑𝐵 ∈ ℝ)
lptioo2.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo2
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4033 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) ⊆ (𝐴(,)𝐵))
2 simpr 488 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
3 ubioo 12932 . . . . . . . . . . . 12 ¬ 𝐵 ∈ (𝐴(,)𝐵)
4 eleq1 2818 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵)))
54biimpcd 252 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐵𝐵 ∈ (𝐴(,)𝐵)))
63, 5mtoi 202 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵)
76adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
8 velsn 4543 . . . . . . . . . 10 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
97, 8sylnibr 332 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐵})
102, 9eldifd 3864 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐵}))
111, 10eqelssd 3908 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) = (𝐴(,)𝐵))
1211ineq2d 4113 . . . . . 6 (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
14 simplrl 777 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*)
15 simplrr 778 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*)
16 lptioo2.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1716ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐴 ∈ ℝ*)
18 elioo3g 12929 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
1918biimpi 219 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
2019simpld 498 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*))
2120simp3d 1146 . . . . . . . 8 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ*)
2221adantl 485 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 ∈ ℝ*)
23 iooin 12934 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
2414, 15, 17, 22, 23syl22anc 839 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
25 iftrue 4431 . . . . . . . . . . 11 (𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
2625adantl 485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
27 lptioo2.4 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2827ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → 𝐴 < 𝐵)
2926, 28eqbrtrd 5061 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
30 iffalse 4434 . . . . . . . . . . 11 𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3130adantl 485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3219simprd 499 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐵𝐵 < 𝑏))
3332simpld 498 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐵)
3433ad2antlr 727 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → 𝑎 < 𝐵)
3531, 34eqbrtrd 5061 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3629, 35pm2.61dan 813 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3732simprd 499 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 < 𝑏)
3820simp2d 1145 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑎(,)𝑏) → 𝑏 ∈ ℝ*)
39 xrltnle 10865 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4021, 38, 39syl2anc 587 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4137, 40mpbid 235 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → ¬ 𝑏𝐵)
42 iffalse 4434 . . . . . . . . . . 11 𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4341, 42syl 17 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4443eqcomd 2742 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4544adantl 485 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4636, 45breqtrd 5065 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵))
4717, 14ifcld 4471 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ*)
4845, 22eqeltrrd 2832 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*)
49 ioon0 12926 . . . . . . . 8 ((if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5047, 48, 49syl2anc 587 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5146, 50mpbird 260 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅)
5224, 51eqnetrd 2999 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅)
5313, 52eqnetrd 2999 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)
5453ex 416 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
5554ralrimivva 3102 . 2 (𝜑 → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
56 lptioo2.1 . . 3 𝐽 = (topGen‘ran (,))
57 ioossre 12961 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
5857a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
59 lptioo2.3 . . 3 (𝜑𝐵 ∈ ℝ)
6056, 58, 59islptre 42778 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)))
6155, 60mpbird 260 1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  cdif 3850  cin 3852  wss 3853  c0 4223  ifcif 4425  {csn 4527   class class class wbr 5039  ran crn 5537  cfv 6358  (class class class)co 7191  cr 10693  *cxr 10831   < clt 10832  cle 10833  (,)cioo 12900  topGenctg 16896  limPtclp 21985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-ioo 12904  df-topgen 16902  df-top 21745  df-topon 21762  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987
This theorem is referenced by:  lptioo2cn  42804  fouriersw  43390
  Copyright terms: Public domain W3C validator