Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo2 Structured version   Visualization version   GIF version

Theorem lptioo2 45598
Description: The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo2.1 𝐽 = (topGen‘ran (,))
lptioo2.2 (𝜑𝐴 ∈ ℝ*)
lptioo2.3 (𝜑𝐵 ∈ ℝ)
lptioo2.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo2
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4148 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) ⊆ (𝐴(,)𝐵))
2 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
3 ubioo 13422 . . . . . . . . . . . 12 ¬ 𝐵 ∈ (𝐴(,)𝐵)
4 eleq1 2828 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵)))
54biimpcd 249 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐵𝐵 ∈ (𝐴(,)𝐵)))
63, 5mtoi 199 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵)
76adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
8 velsn 4648 . . . . . . . . . 10 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
97, 8sylnibr 329 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐵})
102, 9eldifd 3975 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐵}))
111, 10eqelssd 4018 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) = (𝐴(,)𝐵))
1211ineq2d 4229 . . . . . 6 (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
14 simplrl 777 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*)
15 simplrr 778 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*)
16 lptioo2.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1716ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐴 ∈ ℝ*)
18 elioo3g 13419 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
1918biimpi 216 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
2019simpld 494 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*))
2120simp3d 1144 . . . . . . . 8 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ*)
2221adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 ∈ ℝ*)
23 iooin 13424 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
2414, 15, 17, 22, 23syl22anc 839 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
25 iftrue 4538 . . . . . . . . . . 11 (𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
2625adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
27 lptioo2.4 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2827ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → 𝐴 < 𝐵)
2926, 28eqbrtrd 5171 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
30 iffalse 4541 . . . . . . . . . . 11 𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3130adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3219simprd 495 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐵𝐵 < 𝑏))
3332simpld 494 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐵)
3433ad2antlr 727 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → 𝑎 < 𝐵)
3531, 34eqbrtrd 5171 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3629, 35pm2.61dan 813 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3732simprd 495 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 < 𝑏)
3820simp2d 1143 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑎(,)𝑏) → 𝑏 ∈ ℝ*)
39 xrltnle 11332 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4021, 38, 39syl2anc 584 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4137, 40mpbid 232 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → ¬ 𝑏𝐵)
42 iffalse 4541 . . . . . . . . . . 11 𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4341, 42syl 17 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4443eqcomd 2742 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4544adantl 481 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4636, 45breqtrd 5175 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵))
4717, 14ifcld 4578 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ*)
4845, 22eqeltrrd 2841 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*)
49 ioon0 13416 . . . . . . . 8 ((if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5047, 48, 49syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5146, 50mpbird 257 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅)
5224, 51eqnetrd 3007 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅)
5313, 52eqnetrd 3007 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)
5453ex 412 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
5554ralrimivva 3201 . 2 (𝜑 → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
56 lptioo2.1 . . 3 𝐽 = (topGen‘ran (,))
57 ioossre 13451 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
5857a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
59 lptioo2.3 . . 3 (𝜑𝐵 ∈ ℝ)
6056, 58, 59islptre 45586 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)))
6155, 60mpbird 257 1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1538  wcel 2107  wne 2939  wral 3060  cdif 3961  cin 3963  wss 3964  c0 4340  ifcif 4532  {csn 4632   class class class wbr 5149  ran crn 5691  cfv 6566  (class class class)co 7435  cr 11158  *cxr 11298   < clt 11299  cle 11300  (,)cioo 13390  topGenctg 17490  limPtclp 23164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-sup 9486  df-inf 9487  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-n0 12531  df-z 12618  df-uz 12883  df-q 12995  df-ioo 13394  df-topgen 17496  df-top 22922  df-topon 22939  df-bases 22975  df-cld 23049  df-ntr 23050  df-cls 23051  df-nei 23128  df-lp 23166
This theorem is referenced by:  lptioo2cn  45612  fouriersw  46198
  Copyright terms: Public domain W3C validator