Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo2 Structured version   Visualization version   GIF version

Theorem lptioo2 45622
Description: The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo2.1 𝐽 = (topGen‘ran (,))
lptioo2.2 (𝜑𝐴 ∈ ℝ*)
lptioo2.3 (𝜑𝐵 ∈ ℝ)
lptioo2.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo2 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo2
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4088 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) ⊆ (𝐴(,)𝐵))
2 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
3 ubioo 13280 . . . . . . . . . . . 12 ¬ 𝐵 ∈ (𝐴(,)𝐵)
4 eleq1 2816 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵)))
54biimpcd 249 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐵𝐵 ∈ (𝐴(,)𝐵)))
63, 5mtoi 199 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐵)
76adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
8 velsn 4593 . . . . . . . . . 10 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
97, 8sylnibr 329 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐵})
102, 9eldifd 3914 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐵}))
111, 10eqelssd 3957 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐵}) = (𝐴(,)𝐵))
1211ineq2d 4171 . . . . . 6 (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
14 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*)
15 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*)
16 lptioo2.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1716ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐴 ∈ ℝ*)
18 elioo3g 13277 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
1918biimpi 216 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝑎 < 𝐵𝐵 < 𝑏)))
2019simpld 494 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐵 ∈ ℝ*))
2120simp3d 1144 . . . . . . . 8 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ*)
2221adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 ∈ ℝ*)
23 iooin 13282 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
2414, 15, 17, 22, 23syl22anc 838 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
25 iftrue 4482 . . . . . . . . . . 11 (𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
2625adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
27 lptioo2.4 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2827ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → 𝐴 < 𝐵)
2926, 28eqbrtrd 5114 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
30 iffalse 4485 . . . . . . . . . . 11 𝑎𝐴 → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3130adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
3219simprd 495 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐵𝐵 < 𝑏))
3332simpld 494 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐵)
3433ad2antlr 727 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → 𝑎 < 𝐵)
3531, 34eqbrtrd 5114 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3629, 35pm2.61dan 812 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < 𝐵)
3732simprd 495 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 < 𝑏)
3820simp2d 1143 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑎(,)𝑏) → 𝑏 ∈ ℝ*)
39 xrltnle 11182 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4021, 38, 39syl2anc 584 . . . . . . . . . . . 12 (𝐵 ∈ (𝑎(,)𝑏) → (𝐵 < 𝑏 ↔ ¬ 𝑏𝐵))
4137, 40mpbid 232 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → ¬ 𝑏𝐵)
42 iffalse 4485 . . . . . . . . . . 11 𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4341, 42syl 17 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4443eqcomd 2735 . . . . . . . . 9 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4544adantl 481 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4636, 45breqtrd 5118 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵))
4717, 14ifcld 4523 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ*)
4845, 22eqeltrrd 2829 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*)
49 ioon0 13274 . . . . . . . 8 ((if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5047, 48, 49syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5146, 50mpbird 257 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅)
5224, 51eqnetrd 2992 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅)
5313, 52eqnetrd 2992 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)
5453ex 412 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
5554ralrimivva 3172 . 2 (𝜑 → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅))
56 lptioo2.1 . . 3 𝐽 = (topGen‘ran (,))
57 ioossre 13310 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
5857a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
59 lptioo2.3 . . 3 (𝜑𝐵 ∈ ℝ)
6056, 58, 59islptre 45610 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐵})) ≠ ∅)))
6155, 60mpbird 257 1 (𝜑𝐵 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3900  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577   class class class wbr 5092  ran crn 5620  cfv 6482  (class class class)co 7349  cr 11008  *cxr 11148   < clt 11149  cle 11150  (,)cioo 13248  topGenctg 17341  limPtclp 23019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-ioo 13252  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021
This theorem is referenced by:  lptioo2cn  45636  fouriersw  46222
  Copyright terms: Public domain W3C validator