Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrar Structured version   Visualization version   GIF version

Theorem uptrar 49189
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uptra.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uptra.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
uptra.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uptra.b 𝐵 = (Base‘𝐷)
uptra.x (𝜑𝑋𝐵)
uptra.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uptrar.m (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
uptrar.z (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
Assertion
Ref Expression
uptrar (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)

Proof of Theorem uptrar
StepHypRef Expression
1 uptrar.z . 2 (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2 uptra.y . . . . 5 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
32adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘𝑋) = 𝑌)
4 uptra.k . . . . 5 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
54adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
6 uptra.g . . . . 5 (𝜑 → (𝐾func 𝐹) = 𝐺)
76adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝐾func 𝐹) = 𝐺)
8 uptra.b . . . 4 𝐵 = (Base‘𝐷)
9 uptra.x . . . . 5 (𝜑𝑋𝐵)
109adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑋𝐵)
11 uptra.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
1211adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐹 ∈ (𝐶 Func 𝐷))
13 uptrar.m . . . . . . 7 (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1413adantr 480 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1514fveq2d 6830 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀))
16 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
17 eqid 2729 . . . . . . . 8 (Hom ‘𝐸) = (Hom ‘𝐸)
18 relfull 17835 . . . . . . . . . . 11 Rel (𝐷 Full 𝐸)
19 relin1 5759 . . . . . . . . . . 11 (Rel (𝐷 Full 𝐸) → Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2018, 19ax-mp 5 . . . . . . . . . 10 Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))
21 1st2ndbr 7984 . . . . . . . . . 10 ((Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2220, 4, 21sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2322adantr 480 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
24 eqid 2729 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
2512func1st2nd 49049 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2624, 8, 25funcf1 17791 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹):(Base‘𝐶)⟶𝐵)
27 simpr 484 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2827up1st2nd 49158 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(⟨(1st𝐺), (2nd𝐺)⟩(𝐶 UP 𝐸)𝑌)𝑁)
2928, 24uprcl4 49164 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍 ∈ (Base‘𝐶))
3026, 29ffvelcdmd 7023 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐹)‘𝑍) ∈ 𝐵)
318, 16, 17, 23, 10, 30ffthf1o 17846 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))))
32 inss1 4190 . . . . . . . . . . . . . 14 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
33 fullfunc 17833 . . . . . . . . . . . . . 14 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
3432, 33sstri 3947 . . . . . . . . . . . . 13 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
3534, 4sselid 3935 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
3635adantr 480 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ (𝐷 Func 𝐸))
3724, 12, 36, 29cofu1 17809 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐾)‘((1st𝐹)‘𝑍)))
387fveq2d 6830 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st ‘(𝐾func 𝐹)) = (1st𝐺))
3938fveq1d 6828 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐺)‘𝑍))
4037, 39eqtr3d 2766 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘((1st𝐹)‘𝑍)) = ((1st𝐺)‘𝑍))
413, 40oveq12d 7371 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) = (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4241f1oeq3d 6765 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) ↔ (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))))
4331, 42mpbid 232 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4428, 17uprcl5 49165 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
45 f1ocnvfv2 7218 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4643, 44, 45syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4715, 46eqtr3d 2766 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
48 f1ocnvdm 7226 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
4943, 44, 48syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
5014, 49eqeltrrd 2829 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑀 ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
513, 5, 7, 8, 10, 12, 47, 16, 50uptra 49188 . . 3 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
521, 51mpdan 687 . 2 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
531, 52mpbird 257 1 (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3904   class class class wbr 5095  ccnv 5622  Rel wrel 5628  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  Hom chom 17190   Func cfunc 17779  func ccofu 17781   Full cful 17829   Faith cfth 17830   UP cup 49146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17592  df-cid 17593  df-func 17783  df-cofu 17785  df-full 17831  df-fth 17832  df-up 49147
This theorem is referenced by:  uobffth  49191
  Copyright terms: Public domain W3C validator