Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrar Structured version   Visualization version   GIF version

Theorem uptrar 49227
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uptra.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uptra.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
uptra.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uptra.b 𝐵 = (Base‘𝐷)
uptra.x (𝜑𝑋𝐵)
uptra.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uptrar.m (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
uptrar.z (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
Assertion
Ref Expression
uptrar (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)

Proof of Theorem uptrar
StepHypRef Expression
1 uptrar.z . 2 (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2 uptra.y . . . . 5 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
32adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘𝑋) = 𝑌)
4 uptra.k . . . . 5 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
54adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
6 uptra.g . . . . 5 (𝜑 → (𝐾func 𝐹) = 𝐺)
76adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝐾func 𝐹) = 𝐺)
8 uptra.b . . . 4 𝐵 = (Base‘𝐷)
9 uptra.x . . . . 5 (𝜑𝑋𝐵)
109adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑋𝐵)
11 uptra.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
1211adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐹 ∈ (𝐶 Func 𝐷))
13 uptrar.m . . . . . . 7 (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1413adantr 480 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1514fveq2d 6821 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀))
16 eqid 2730 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
17 eqid 2730 . . . . . . . 8 (Hom ‘𝐸) = (Hom ‘𝐸)
18 relfull 17809 . . . . . . . . . . 11 Rel (𝐷 Full 𝐸)
19 relin1 5750 . . . . . . . . . . 11 (Rel (𝐷 Full 𝐸) → Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2018, 19ax-mp 5 . . . . . . . . . 10 Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))
21 1st2ndbr 7969 . . . . . . . . . 10 ((Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2220, 4, 21sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2322adantr 480 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
24 eqid 2730 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
2512func1st2nd 49087 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2624, 8, 25funcf1 17765 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹):(Base‘𝐶)⟶𝐵)
27 simpr 484 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2827up1st2nd 49196 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(⟨(1st𝐺), (2nd𝐺)⟩(𝐶 UP 𝐸)𝑌)𝑁)
2928, 24uprcl4 49202 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍 ∈ (Base‘𝐶))
3026, 29ffvelcdmd 7013 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐹)‘𝑍) ∈ 𝐵)
318, 16, 17, 23, 10, 30ffthf1o 17820 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))))
32 inss1 4185 . . . . . . . . . . . . . 14 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
33 fullfunc 17807 . . . . . . . . . . . . . 14 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
3432, 33sstri 3942 . . . . . . . . . . . . 13 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
3534, 4sselid 3930 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
3635adantr 480 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ (𝐷 Func 𝐸))
3724, 12, 36, 29cofu1 17783 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐾)‘((1st𝐹)‘𝑍)))
387fveq2d 6821 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st ‘(𝐾func 𝐹)) = (1st𝐺))
3938fveq1d 6819 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐺)‘𝑍))
4037, 39eqtr3d 2767 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘((1st𝐹)‘𝑍)) = ((1st𝐺)‘𝑍))
413, 40oveq12d 7359 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) = (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4241f1oeq3d 6756 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) ↔ (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))))
4331, 42mpbid 232 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4428, 17uprcl5 49203 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
45 f1ocnvfv2 7206 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4643, 44, 45syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4715, 46eqtr3d 2767 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
48 f1ocnvdm 7214 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
4943, 44, 48syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
5014, 49eqeltrrd 2830 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑀 ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
513, 5, 7, 8, 10, 12, 47, 16, 50uptra 49226 . . 3 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
521, 51mpdan 687 . 2 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
531, 52mpbird 257 1 (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  cin 3899   class class class wbr 5089  ccnv 5613  Rel wrel 5619  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Basecbs 17112  Hom chom 17164   Func cfunc 17753  func ccofu 17755   Full cful 17803   Faith cfth 17804   UP cup 49184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-ixp 8817  df-cat 17566  df-cid 17567  df-func 17757  df-cofu 17759  df-full 17805  df-fth 17806  df-up 49185
This theorem is referenced by:  uobffth  49229
  Copyright terms: Public domain W3C validator