Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrar Structured version   Visualization version   GIF version

Theorem uptrar 49331
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uptra.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uptra.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
uptra.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uptra.b 𝐵 = (Base‘𝐷)
uptra.x (𝜑𝑋𝐵)
uptra.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uptrar.m (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
uptrar.z (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
Assertion
Ref Expression
uptrar (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)

Proof of Theorem uptrar
StepHypRef Expression
1 uptrar.z . 2 (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2 uptra.y . . . . 5 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
32adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘𝑋) = 𝑌)
4 uptra.k . . . . 5 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
54adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
6 uptra.g . . . . 5 (𝜑 → (𝐾func 𝐹) = 𝐺)
76adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝐾func 𝐹) = 𝐺)
8 uptra.b . . . 4 𝐵 = (Base‘𝐷)
9 uptra.x . . . . 5 (𝜑𝑋𝐵)
109adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑋𝐵)
11 uptra.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
1211adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐹 ∈ (𝐶 Func 𝐷))
13 uptrar.m . . . . . . 7 (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1413adantr 480 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1514fveq2d 6835 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀))
16 eqid 2733 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
17 eqid 2733 . . . . . . . 8 (Hom ‘𝐸) = (Hom ‘𝐸)
18 relfull 17827 . . . . . . . . . . 11 Rel (𝐷 Full 𝐸)
19 relin1 5758 . . . . . . . . . . 11 (Rel (𝐷 Full 𝐸) → Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2018, 19ax-mp 5 . . . . . . . . . 10 Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))
21 1st2ndbr 7983 . . . . . . . . . 10 ((Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2220, 4, 21sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2322adantr 480 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
24 eqid 2733 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
2512func1st2nd 49191 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2624, 8, 25funcf1 17783 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹):(Base‘𝐶)⟶𝐵)
27 simpr 484 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2827up1st2nd 49300 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(⟨(1st𝐺), (2nd𝐺)⟩(𝐶 UP 𝐸)𝑌)𝑁)
2928, 24uprcl4 49306 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍 ∈ (Base‘𝐶))
3026, 29ffvelcdmd 7027 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐹)‘𝑍) ∈ 𝐵)
318, 16, 17, 23, 10, 30ffthf1o 17838 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))))
32 inss1 4188 . . . . . . . . . . . . . 14 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
33 fullfunc 17825 . . . . . . . . . . . . . 14 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
3432, 33sstri 3941 . . . . . . . . . . . . 13 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
3534, 4sselid 3929 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
3635adantr 480 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ (𝐷 Func 𝐸))
3724, 12, 36, 29cofu1 17801 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐾)‘((1st𝐹)‘𝑍)))
387fveq2d 6835 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st ‘(𝐾func 𝐹)) = (1st𝐺))
3938fveq1d 6833 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐺)‘𝑍))
4037, 39eqtr3d 2770 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘((1st𝐹)‘𝑍)) = ((1st𝐺)‘𝑍))
413, 40oveq12d 7373 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) = (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4241f1oeq3d 6768 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) ↔ (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))))
4331, 42mpbid 232 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4428, 17uprcl5 49307 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
45 f1ocnvfv2 7220 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4643, 44, 45syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4715, 46eqtr3d 2770 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
48 f1ocnvdm 7228 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
4943, 44, 48syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
5014, 49eqeltrrd 2834 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑀 ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
513, 5, 7, 8, 10, 12, 47, 16, 50uptra 49330 . . 3 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
521, 51mpdan 687 . 2 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
531, 52mpbird 257 1 (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cin 3898   class class class wbr 5095  ccnv 5620  Rel wrel 5626  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Basecbs 17130  Hom chom 17182   Func cfunc 17771  func ccofu 17773   Full cful 17821   Faith cfth 17822   UP cup 49288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8831  df-cat 17584  df-cid 17585  df-func 17775  df-cofu 17777  df-full 17823  df-fth 17824  df-up 49289
This theorem is referenced by:  uobffth  49333
  Copyright terms: Public domain W3C validator