Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrar Structured version   Visualization version   GIF version

Theorem uptrar 49205
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uptra.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uptra.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
uptra.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uptra.b 𝐵 = (Base‘𝐷)
uptra.x (𝜑𝑋𝐵)
uptra.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uptrar.m (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
uptrar.z (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
Assertion
Ref Expression
uptrar (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)

Proof of Theorem uptrar
StepHypRef Expression
1 uptrar.z . 2 (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2 uptra.y . . . . 5 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
32adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘𝑋) = 𝑌)
4 uptra.k . . . . 5 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
54adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
6 uptra.g . . . . 5 (𝜑 → (𝐾func 𝐹) = 𝐺)
76adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝐾func 𝐹) = 𝐺)
8 uptra.b . . . 4 𝐵 = (Base‘𝐷)
9 uptra.x . . . . 5 (𝜑𝑋𝐵)
109adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑋𝐵)
11 uptra.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
1211adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐹 ∈ (𝐶 Func 𝐷))
13 uptrar.m . . . . . . 7 (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1413adantr 480 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1514fveq2d 6862 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀))
16 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
17 eqid 2729 . . . . . . . 8 (Hom ‘𝐸) = (Hom ‘𝐸)
18 relfull 17872 . . . . . . . . . . 11 Rel (𝐷 Full 𝐸)
19 relin1 5775 . . . . . . . . . . 11 (Rel (𝐷 Full 𝐸) → Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2018, 19ax-mp 5 . . . . . . . . . 10 Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))
21 1st2ndbr 8021 . . . . . . . . . 10 ((Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2220, 4, 21sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2322adantr 480 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
24 eqid 2729 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
2512func1st2nd 49065 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2624, 8, 25funcf1 17828 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹):(Base‘𝐶)⟶𝐵)
27 simpr 484 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2827up1st2nd 49174 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(⟨(1st𝐺), (2nd𝐺)⟩(𝐶 UP 𝐸)𝑌)𝑁)
2928, 24uprcl4 49180 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍 ∈ (Base‘𝐶))
3026, 29ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐹)‘𝑍) ∈ 𝐵)
318, 16, 17, 23, 10, 30ffthf1o 17883 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))))
32 inss1 4200 . . . . . . . . . . . . . 14 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
33 fullfunc 17870 . . . . . . . . . . . . . 14 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
3432, 33sstri 3956 . . . . . . . . . . . . 13 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
3534, 4sselid 3944 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
3635adantr 480 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ (𝐷 Func 𝐸))
3724, 12, 36, 29cofu1 17846 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐾)‘((1st𝐹)‘𝑍)))
387fveq2d 6862 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st ‘(𝐾func 𝐹)) = (1st𝐺))
3938fveq1d 6860 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐺)‘𝑍))
4037, 39eqtr3d 2766 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘((1st𝐹)‘𝑍)) = ((1st𝐺)‘𝑍))
413, 40oveq12d 7405 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) = (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4241f1oeq3d 6797 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) ↔ (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))))
4331, 42mpbid 232 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4428, 17uprcl5 49181 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
45 f1ocnvfv2 7252 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4643, 44, 45syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4715, 46eqtr3d 2766 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
48 f1ocnvdm 7260 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
4943, 44, 48syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
5014, 49eqeltrrd 2829 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑀 ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
513, 5, 7, 8, 10, 12, 47, 16, 50uptra 49204 . . 3 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
521, 51mpdan 687 . 2 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
531, 52mpbird 257 1 (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3913   class class class wbr 5107  ccnv 5637  Rel wrel 5643  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231   Func cfunc 17816  func ccofu 17818   Full cful 17866   Faith cfth 17867   UP cup 49162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-full 17868  df-fth 17869  df-up 49163
This theorem is referenced by:  uobffth  49207
  Copyright terms: Public domain W3C validator