Proof of Theorem uptrar
| Step | Hyp | Ref
| Expression |
| 1 | | uptrar.z |
. 2
⊢ (𝜑 → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) |
| 2 | | uptra.y |
. . . . 5
⊢ (𝜑 → ((1st
‘𝐾)‘𝑋) = 𝑌) |
| 3 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| 4 | | uptra.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 6 | | uptra.g |
. . . . 5
⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝐾 ∘func 𝐹) = 𝐺) |
| 8 | | uptra.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
| 9 | | uptra.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 10 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑋 ∈ 𝐵) |
| 11 | | uptra.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 12 | 11 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 13 | | uptrar.m |
. . . . . . 7
⊢ (𝜑 → (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑁) = 𝑀) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑁) = 𝑀) |
| 15 | 14 | fveq2d 6869 |
. . . . 5
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘(◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑁)) = ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀)) |
| 16 | | eqid 2730 |
. . . . . . . 8
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 17 | | eqid 2730 |
. . . . . . . 8
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 18 | | relfull 17878 |
. . . . . . . . . . 11
⊢ Rel
(𝐷 Full 𝐸) |
| 19 | | relin1 5783 |
. . . . . . . . . . 11
⊢ (Rel
(𝐷 Full 𝐸) → Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . . . 10
⊢ Rel
((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) |
| 21 | | 1st2ndbr 8030 |
. . . . . . . . . 10
⊢ ((Rel
((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) → (1st ‘𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd ‘𝐾)) |
| 22 | 20, 4, 21 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd ‘𝐾)) |
| 23 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st ‘𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd ‘𝐾)) |
| 24 | | eqid 2730 |
. . . . . . . . . 10
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 25 | 12 | func1st2nd 48993 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 26 | 24, 8, 25 | funcf1 17834 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st ‘𝐹):(Base‘𝐶)⟶𝐵) |
| 27 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) |
| 28 | 27 | up1st2nd 49092 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(〈(1st ‘𝐺), (2nd ‘𝐺)〉(𝐶 UP 𝐸)𝑌)𝑁) |
| 29 | 28, 24 | uprcl4 49098 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍 ∈ (Base‘𝐶)) |
| 30 | 26, 29 | ffvelcdmd 7064 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘𝐹)‘𝑍) ∈ 𝐵) |
| 31 | 8, 16, 17, 23, 10, 30 | ffthf1o 17889 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))–1-1-onto→(((1st ‘𝐾)‘𝑋)(Hom ‘𝐸)((1st ‘𝐾)‘((1st ‘𝐹)‘𝑍)))) |
| 32 | | inss1 4208 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸) |
| 33 | | fullfunc 17876 |
. . . . . . . . . . . . . 14
⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) |
| 34 | 32, 33 | sstri 3964 |
. . . . . . . . . . . . 13
⊢ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸) |
| 35 | 34, 4 | sselid 3952 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 37 | 24, 12, 36, 29 | cofu1 17852 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾 ∘func
𝐹))‘𝑍) = ((1st ‘𝐾)‘((1st
‘𝐹)‘𝑍))) |
| 38 | 7 | fveq2d 6869 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st ‘(𝐾 ∘func
𝐹)) = (1st
‘𝐺)) |
| 39 | 38 | fveq1d 6867 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾 ∘func
𝐹))‘𝑍) = ((1st ‘𝐺)‘𝑍)) |
| 40 | 37, 39 | eqtr3d 2767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘𝐾)‘((1st
‘𝐹)‘𝑍)) = ((1st
‘𝐺)‘𝑍)) |
| 41 | 3, 40 | oveq12d 7412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (((1st ‘𝐾)‘𝑋)(Hom ‘𝐸)((1st ‘𝐾)‘((1st ‘𝐹)‘𝑍))) = (𝑌(Hom ‘𝐸)((1st ‘𝐺)‘𝑍))) |
| 42 | 41 | f1oeq3d 6804 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))–1-1-onto→(((1st ‘𝐾)‘𝑋)(Hom ‘𝐸)((1st ‘𝐾)‘((1st ‘𝐹)‘𝑍))) ↔ (𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st ‘𝐺)‘𝑍)))) |
| 43 | 31, 42 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st ‘𝐺)‘𝑍))) |
| 44 | 28, 17 | uprcl5 49099 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st ‘𝐺)‘𝑍))) |
| 45 | | f1ocnvfv2 7259 |
. . . . . 6
⊢ (((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st ‘𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st ‘𝐺)‘𝑍))) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘(◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑁)) = 𝑁) |
| 46 | 43, 44, 45 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘(◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑁)) = 𝑁) |
| 47 | 15, 46 | eqtr3d 2767 |
. . . 4
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) |
| 48 | | f1ocnvdm 7267 |
. . . . . 6
⊢ (((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st ‘𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st ‘𝐺)‘𝑍))) → (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))) |
| 49 | 43, 44, 48 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))) |
| 50 | 14, 49 | eqeltrrd 2830 |
. . . 4
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑀 ∈ (𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))) |
| 51 | 3, 5, 7, 8, 10, 12, 47, 16, 50 | uptra 49122 |
. . 3
⊢ ((𝜑 ∧ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)) |
| 52 | 1, 51 | mpdan 687 |
. 2
⊢ (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)) |
| 53 | 1, 52 | mpbird 257 |
1
⊢ (𝜑 → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) |