Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrar Structured version   Visualization version   GIF version

Theorem uptrar 49123
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uptra.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uptra.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
uptra.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uptra.b 𝐵 = (Base‘𝐷)
uptra.x (𝜑𝑋𝐵)
uptra.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uptrar.m (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
uptrar.z (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
Assertion
Ref Expression
uptrar (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)

Proof of Theorem uptrar
StepHypRef Expression
1 uptrar.z . 2 (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2 uptra.y . . . . 5 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
32adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘𝑋) = 𝑌)
4 uptra.k . . . . 5 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
54adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
6 uptra.g . . . . 5 (𝜑 → (𝐾func 𝐹) = 𝐺)
76adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝐾func 𝐹) = 𝐺)
8 uptra.b . . . 4 𝐵 = (Base‘𝐷)
9 uptra.x . . . . 5 (𝜑𝑋𝐵)
109adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑋𝐵)
11 uptra.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
1211adantr 480 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐹 ∈ (𝐶 Func 𝐷))
13 uptrar.m . . . . . . 7 (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1413adantr 480 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) = 𝑀)
1514fveq2d 6869 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀))
16 eqid 2730 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
17 eqid 2730 . . . . . . . 8 (Hom ‘𝐸) = (Hom ‘𝐸)
18 relfull 17878 . . . . . . . . . . 11 Rel (𝐷 Full 𝐸)
19 relin1 5783 . . . . . . . . . . 11 (Rel (𝐷 Full 𝐸) → Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2018, 19ax-mp 5 . . . . . . . . . 10 Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))
21 1st2ndbr 8030 . . . . . . . . . 10 ((Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2220, 4, 21sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
2322adantr 480 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
24 eqid 2730 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
2512func1st2nd 48993 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2624, 8, 25funcf1 17834 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st𝐹):(Base‘𝐶)⟶𝐵)
27 simpr 484 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
2827up1st2nd 49092 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍(⟨(1st𝐺), (2nd𝐺)⟩(𝐶 UP 𝐸)𝑌)𝑁)
2928, 24uprcl4 49098 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑍 ∈ (Base‘𝐶))
3026, 29ffvelcdmd 7064 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐹)‘𝑍) ∈ 𝐵)
318, 16, 17, 23, 10, 30ffthf1o 17889 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))))
32 inss1 4208 . . . . . . . . . . . . . 14 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
33 fullfunc 17876 . . . . . . . . . . . . . 14 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
3432, 33sstri 3964 . . . . . . . . . . . . 13 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
3534, 4sselid 3952 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
3635adantr 480 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝐾 ∈ (𝐷 Func 𝐸))
3724, 12, 36, 29cofu1 17852 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐾)‘((1st𝐹)‘𝑍)))
387fveq2d 6869 . . . . . . . . . . 11 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (1st ‘(𝐾func 𝐹)) = (1st𝐺))
3938fveq1d 6867 . . . . . . . . . 10 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st ‘(𝐾func 𝐹))‘𝑍) = ((1st𝐺)‘𝑍))
4037, 39eqtr3d 2767 . . . . . . . . 9 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((1st𝐾)‘((1st𝐹)‘𝑍)) = ((1st𝐺)‘𝑍))
413, 40oveq12d 7412 . . . . . . . 8 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) = (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4241f1oeq3d 6804 . . . . . . 7 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(((1st𝐾)‘𝑋)(Hom ‘𝐸)((1st𝐾)‘((1st𝐹)‘𝑍))) ↔ (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))))
4331, 42mpbid 232 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
4428, 17uprcl5 49099 . . . . . 6 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)))
45 f1ocnvfv2 7259 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4643, 44, 45syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁)) = 𝑁)
4715, 46eqtr3d 2767 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
48 f1ocnvdm 7267 . . . . . 6 (((𝑋(2nd𝐾)((1st𝐹)‘𝑍)):(𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍))–1-1-onto→(𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍)) ∧ 𝑁 ∈ (𝑌(Hom ‘𝐸)((1st𝐺)‘𝑍))) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
4943, 44, 48syl2anc 584 . . . . 5 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑁) ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
5014, 49eqeltrrd 2830 . . . 4 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → 𝑀 ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
513, 5, 7, 8, 10, 12, 47, 16, 50uptra 49122 . . 3 ((𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
521, 51mpdan 687 . 2 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
531, 52mpbird 257 1 (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3921   class class class wbr 5115  ccnv 5645  Rel wrel 5651  1-1-ontowf1o 6518  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  Hom chom 17237   Func cfunc 17822  func ccofu 17824   Full cful 17872   Faith cfth 17873   UP cup 49081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-full 17874  df-fth 17875  df-up 49082
This theorem is referenced by:  uobeq  49126
  Copyright terms: Public domain W3C validator