Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uobffth Structured version   Visualization version   GIF version

Theorem uobffth 49329
Description: A fully faithful functor generates equal sets of universal objects. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
uobffth.b 𝐵 = (Base‘𝐷)
uobffth.x (𝜑𝑋𝐵)
uobffth.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uobffth.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uobffth.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uobffth.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
Assertion
Ref Expression
uobffth (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))

Proof of Theorem uobffth
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1954 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) ↔ (𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
2 fvexd 6837 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) ∈ V)
3 uobffth.y . . . . . . . . 9 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
43adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((1st𝐾)‘𝑋) = 𝑌)
5 uobffth.k . . . . . . . . 9 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
65adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
7 uobffth.g . . . . . . . . 9 (𝜑 → (𝐾func 𝐹) = 𝐺)
87adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → (𝐾func 𝐹) = 𝐺)
9 eqidd 2732 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
10 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
114, 6, 8, 9, 10uptrai 49328 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
12 breq2 5093 . . . . . . 7 (𝑛 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) → (𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚)))
132, 11, 12spcedv 3548 . . . . . 6 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
1413exlimiv 1931 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
151, 14sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
16 19.42v 1954 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) ↔ (𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
17 fvexd 6837 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛) ∈ V)
183adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((1st𝐾)‘𝑋) = 𝑌)
195adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
207adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (𝐾func 𝐹) = 𝐺)
21 uobffth.b . . . . . . . 8 𝐵 = (Base‘𝐷)
22 uobffth.x . . . . . . . . 9 (𝜑𝑋𝐵)
2322adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑋𝐵)
24 uobffth.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2524adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐹 ∈ (𝐶 Func 𝐷))
26 eqidd 2732 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛))
27 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
2818, 19, 20, 21, 23, 25, 26, 27uptrar 49327 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛))
29 breq2 5093 . . . . . . 7 (𝑚 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛) → (𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛)))
3017, 28, 29spcedv 3548 . . . . . 6 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
3130exlimiv 1931 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
3216, 31sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
3315, 32impbida 800 . . 3 (𝜑 → (∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
34 relup 49294 . . . 4 Rel (𝐹(𝐶 UP 𝐷)𝑋)
35 releldmb 5885 . . . 4 (Rel (𝐹(𝐶 UP 𝐷)𝑋) → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
3634, 35ax-mp 5 . . 3 (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
37 relup 49294 . . . 4 Rel (𝐺(𝐶 UP 𝐸)𝑌)
38 releldmb 5885 . . . 4 (Rel (𝐺(𝐶 UP 𝐸)𝑌) → (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
3937, 38ax-mp 5 . . 3 (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
4033, 36, 393bitr4g 314 . 2 (𝜑 → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ 𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌)))
4140eqrdv 2729 1 (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cin 3896   class class class wbr 5089  ccnv 5613  dom cdm 5614  Rel wrel 5619  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17120   Func cfunc 17761  func ccofu 17763   Full cful 17811   Faith cfth 17812   UP cup 49284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17574  df-cid 17575  df-func 17765  df-cofu 17767  df-full 17813  df-fth 17814  df-up 49285
This theorem is referenced by:  uobeq  49331  uobeq3  49513
  Copyright terms: Public domain W3C validator