Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uobffth Structured version   Visualization version   GIF version

Theorem uobffth 49200
Description: A fully faithful functor generates equal sets of universal objects. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
uobffth.b 𝐵 = (Base‘𝐷)
uobffth.x (𝜑𝑋𝐵)
uobffth.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uobffth.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uobffth.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uobffth.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
Assertion
Ref Expression
uobffth (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))

Proof of Theorem uobffth
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1953 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) ↔ (𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
2 fvexd 6855 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) ∈ V)
3 uobffth.y . . . . . . . . 9 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
43adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((1st𝐾)‘𝑋) = 𝑌)
5 uobffth.k . . . . . . . . 9 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
65adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
7 uobffth.g . . . . . . . . 9 (𝜑 → (𝐾func 𝐹) = 𝐺)
87adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → (𝐾func 𝐹) = 𝐺)
9 eqidd 2730 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
10 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
114, 6, 8, 9, 10uptrai 49199 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
12 breq2 5106 . . . . . . 7 (𝑛 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) → (𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚)))
132, 11, 12spcedv 3561 . . . . . 6 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
1413exlimiv 1930 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
151, 14sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
16 19.42v 1953 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) ↔ (𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
17 fvexd 6855 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛) ∈ V)
183adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((1st𝐾)‘𝑋) = 𝑌)
195adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
207adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (𝐾func 𝐹) = 𝐺)
21 uobffth.b . . . . . . . 8 𝐵 = (Base‘𝐷)
22 uobffth.x . . . . . . . . 9 (𝜑𝑋𝐵)
2322adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑋𝐵)
24 uobffth.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
2524adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐹 ∈ (𝐶 Func 𝐷))
26 eqidd 2730 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛))
27 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
2818, 19, 20, 21, 23, 25, 26, 27uptrar 49198 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛))
29 breq2 5106 . . . . . . 7 (𝑚 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛) → (𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛)))
3017, 28, 29spcedv 3561 . . . . . 6 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
3130exlimiv 1930 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
3216, 31sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
3315, 32impbida 800 . . 3 (𝜑 → (∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
34 relup 49165 . . . 4 Rel (𝐹(𝐶 UP 𝐷)𝑋)
35 releldmb 5899 . . . 4 (Rel (𝐹(𝐶 UP 𝐷)𝑋) → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
3634, 35ax-mp 5 . . 3 (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
37 relup 49165 . . . 4 Rel (𝐺(𝐶 UP 𝐸)𝑌)
38 releldmb 5899 . . . 4 (Rel (𝐺(𝐶 UP 𝐸)𝑌) → (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
3937, 38ax-mp 5 . . 3 (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
4033, 36, 393bitr4g 314 . 2 (𝜑 → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ 𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌)))
4140eqrdv 2727 1 (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444  cin 3910   class class class wbr 5102  ccnv 5630  dom cdm 5631  Rel wrel 5636  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155   Func cfunc 17796  func ccofu 17798   Full cful 17846   Faith cfth 17847   UP cup 49155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-func 17800  df-cofu 17802  df-full 17848  df-fth 17849  df-up 49156
This theorem is referenced by:  uobeq  49202  uobeq3  49384
  Copyright terms: Public domain W3C validator