| Step | Hyp | Ref
| Expression |
| 1 | | 19.42v 1953 |
. . . . 5
⊢
(∃𝑚(𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) ↔ (𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)) |
| 2 | | fvexd 6875 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚) ∈ V) |
| 3 | | uobffth.y |
. . . . . . . . 9
⊢ (𝜑 → ((1st
‘𝐾)‘𝑋) = 𝑌) |
| 4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| 5 | | uobffth.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 6 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 7 | | uobffth.g |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| 8 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → (𝐾 ∘func 𝐹) = 𝐺) |
| 9 | | eqidd 2731 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚) = ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚)) |
| 10 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 11 | 4, 6, 8, 9, 10 | uptrai 49196 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚)) |
| 12 | | breq2 5113 |
. . . . . . 7
⊢ (𝑛 = ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚) → (𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛 ↔ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚))) |
| 13 | 2, 11, 12 | spcedv 3567 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 14 | 13 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑚(𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 15 | 1, 14 | sylbir 235 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 16 | | 19.42v 1953 |
. . . . 5
⊢
(∃𝑛(𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) ↔ (𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)) |
| 17 | | fvexd 6875 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛) ∈ V) |
| 18 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| 19 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 20 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (𝐾 ∘func 𝐹) = 𝐺) |
| 21 | | uobffth.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐷) |
| 22 | | uobffth.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 23 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑋 ∈ 𝐵) |
| 24 | | uobffth.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 25 | 24 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 26 | | eqidd 2731 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛) = (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛)) |
| 27 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 28 | 18, 19, 20, 21, 23, 25, 26, 27 | uptrar 49195 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)(◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛)) |
| 29 | | breq2 5113 |
. . . . . . 7
⊢ (𝑚 = (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛) → (𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)(◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛))) |
| 30 | 17, 28, 29 | spcedv 3567 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 31 | 30 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑛(𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 32 | 16, 31 | sylbir 235 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 33 | 15, 32 | impbida 800 |
. . 3
⊢ (𝜑 → (∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)) |
| 34 | | relup 49162 |
. . . 4
⊢ Rel
(𝐹(𝐶 UP 𝐷)𝑋) |
| 35 | | releldmb 5912 |
. . . 4
⊢ (Rel
(𝐹(𝐶 UP 𝐷)𝑋) → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)) |
| 36 | 34, 35 | ax-mp 5 |
. . 3
⊢ (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 37 | | relup 49162 |
. . . 4
⊢ Rel
(𝐺(𝐶 UP 𝐸)𝑌) |
| 38 | | releldmb 5912 |
. . . 4
⊢ (Rel
(𝐺(𝐶 UP 𝐸)𝑌) → (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)) |
| 39 | 37, 38 | ax-mp 5 |
. . 3
⊢ (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 40 | 33, 36, 39 | 3bitr4g 314 |
. 2
⊢ (𝜑 → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ 𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌))) |
| 41 | 40 | eqrdv 2728 |
1
⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |