![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzin2 | Structured version Visualization version GIF version |
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
Ref | Expression |
---|---|
uzin2 | ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12807 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | ffn 6704 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ℤ≥ Fn ℤ |
4 | fvelrnb 6939 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴) |
6 | fvelrnb 6939 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵)) | |
7 | 3, 6 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵) |
8 | ineq1 4201 | . . 3 ⊢ ((ℤ≥‘𝑥) = 𝐴 → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ (ℤ≥‘𝑦))) | |
9 | 8 | eleq1d 2817 | . 2 ⊢ ((ℤ≥‘𝑥) = 𝐴 → (((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥)) |
10 | ineq2 4202 | . . 3 ⊢ ((ℤ≥‘𝑦) = 𝐵 → (𝐴 ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ 𝐵)) | |
11 | 10 | eleq1d 2817 | . 2 ⊢ ((ℤ≥‘𝑦) = 𝐵 → ((𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ 𝐵) ∈ ran ℤ≥)) |
12 | uzin 12844 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥))) | |
13 | ifcl 4567 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) | |
14 | 13 | ancoms 459 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) |
15 | fnfvelrn 7067 | . . . 4 ⊢ ((ℤ≥ Fn ℤ ∧ if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) | |
16 | 3, 14, 15 | sylancr 587 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) |
17 | 12, 16 | eqeltrd 2832 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥) |
18 | 5, 7, 9, 11, 17 | 2gencl 3514 | 1 ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3069 ∩ cin 3943 ifcif 4522 𝒫 cpw 4596 class class class wbr 5141 ran crn 5670 Fn wfn 6527 ⟶wf 6528 ‘cfv 6532 ≤ cle 11231 ℤcz 12540 ℤ≥cuz 12804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-pre-lttri 11166 ax-pre-lttrn 11167 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-neg 11429 df-z 12541 df-uz 12805 |
This theorem is referenced by: rexanuz 15274 zfbas 23329 heibor1lem 36482 |
Copyright terms: Public domain | W3C validator |