| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzin2 | Structured version Visualization version GIF version | ||
| Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
| Ref | Expression |
|---|---|
| uzin2 | ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12881 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | ffn 6736 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ℤ≥ Fn ℤ |
| 4 | fvelrnb 6969 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴) |
| 6 | fvelrnb 6969 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵)) | |
| 7 | 3, 6 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵) |
| 8 | ineq1 4213 | . . 3 ⊢ ((ℤ≥‘𝑥) = 𝐴 → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ (ℤ≥‘𝑦))) | |
| 9 | 8 | eleq1d 2826 | . 2 ⊢ ((ℤ≥‘𝑥) = 𝐴 → (((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥)) |
| 10 | ineq2 4214 | . . 3 ⊢ ((ℤ≥‘𝑦) = 𝐵 → (𝐴 ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ 𝐵)) | |
| 11 | 10 | eleq1d 2826 | . 2 ⊢ ((ℤ≥‘𝑦) = 𝐵 → ((𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ 𝐵) ∈ ran ℤ≥)) |
| 12 | uzin 12918 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥))) | |
| 13 | ifcl 4571 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) | |
| 14 | 13 | ancoms 458 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) |
| 15 | fnfvelrn 7100 | . . . 4 ⊢ ((ℤ≥ Fn ℤ ∧ if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) | |
| 16 | 3, 14, 15 | sylancr 587 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) |
| 17 | 12, 16 | eqeltrd 2841 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥) |
| 18 | 5, 7, 9, 11, 17 | 2gencl 3524 | 1 ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ∩ cin 3950 ifcif 4525 𝒫 cpw 4600 class class class wbr 5143 ran crn 5686 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 ≤ cle 11296 ℤcz 12613 ℤ≥cuz 12878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-neg 11495 df-z 12614 df-uz 12879 |
| This theorem is referenced by: rexanuz 15384 zfbas 23904 heibor1lem 37816 |
| Copyright terms: Public domain | W3C validator |