Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzin2 | Structured version Visualization version GIF version |
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
Ref | Expression |
---|---|
uzin2 | ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12514 | . . . 4 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | ffn 6584 | . . . 4 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ℤ≥ Fn ℤ |
4 | fvelrnb 6812 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = 𝐴) |
6 | fvelrnb 6812 | . . 3 ⊢ (ℤ≥ Fn ℤ → (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵)) | |
7 | 3, 6 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ ran ℤ≥ ↔ ∃𝑦 ∈ ℤ (ℤ≥‘𝑦) = 𝐵) |
8 | ineq1 4136 | . . 3 ⊢ ((ℤ≥‘𝑥) = 𝐴 → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ (ℤ≥‘𝑦))) | |
9 | 8 | eleq1d 2823 | . 2 ⊢ ((ℤ≥‘𝑥) = 𝐴 → (((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥)) |
10 | ineq2 4137 | . . 3 ⊢ ((ℤ≥‘𝑦) = 𝐵 → (𝐴 ∩ (ℤ≥‘𝑦)) = (𝐴 ∩ 𝐵)) | |
11 | 10 | eleq1d 2823 | . 2 ⊢ ((ℤ≥‘𝑦) = 𝐵 → ((𝐴 ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥ ↔ (𝐴 ∩ 𝐵) ∈ ran ℤ≥)) |
12 | uzin 12547 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) = (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥))) | |
13 | ifcl 4501 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) | |
14 | 13 | ancoms 458 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) |
15 | fnfvelrn 6940 | . . . 4 ⊢ ((ℤ≥ Fn ℤ ∧ if(𝑥 ≤ 𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) | |
16 | 3, 14, 15 | sylancr 586 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ≥‘if(𝑥 ≤ 𝑦, 𝑦, 𝑥)) ∈ ran ℤ≥) |
17 | 12, 16 | eqeltrd 2839 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ≥‘𝑥) ∩ (ℤ≥‘𝑦)) ∈ ran ℤ≥) |
18 | 5, 7, 9, 11, 17 | 2gencl 3462 | 1 ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 ifcif 4456 𝒫 cpw 4530 class class class wbr 5070 ran crn 5581 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: rexanuz 14985 zfbas 22955 heibor1lem 35894 |
Copyright terms: Public domain | W3C validator |