MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzin2 Structured version   Visualization version   GIF version

Theorem uzin2 15393
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)

Proof of Theorem uzin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 12906 . . . 4 :ℤ⟶𝒫 ℤ
2 ffn 6747 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 5 . . 3 Fn ℤ
4 fvelrnb 6982 . . 3 (ℤ Fn ℤ → (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴))
53, 4ax-mp 5 . 2 (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴)
6 fvelrnb 6982 . . 3 (ℤ Fn ℤ → (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵))
73, 6ax-mp 5 . 2 (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵)
8 ineq1 4234 . . 3 ((ℤ𝑥) = 𝐴 → ((ℤ𝑥) ∩ (ℤ𝑦)) = (𝐴 ∩ (ℤ𝑦)))
98eleq1d 2829 . 2 ((ℤ𝑥) = 𝐴 → (((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ))
10 ineq2 4235 . . 3 ((ℤ𝑦) = 𝐵 → (𝐴 ∩ (ℤ𝑦)) = (𝐴𝐵))
1110eleq1d 2829 . 2 ((ℤ𝑦) = 𝐵 → ((𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴𝐵) ∈ ran ℤ))
12 uzin 12943 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) = (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)))
13 ifcl 4593 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ)
1413ancoms 458 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ)
15 fnfvelrn 7114 . . . 4 ((ℤ Fn ℤ ∧ if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
163, 14, 15sylancr 586 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
1712, 16eqeltrd 2844 . 2 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ)
185, 7, 9, 11, 172gencl 3534 1 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  cin 3975  ifcif 4548  𝒫 cpw 4622   class class class wbr 5166  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  cle 11325  cz 12639  cuz 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-z 12640  df-uz 12904
This theorem is referenced by:  rexanuz  15394  zfbas  23925  heibor1lem  37769
  Copyright terms: Public domain W3C validator