MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzin2 Structured version   Visualization version   GIF version

Theorem uzin2 14984
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)

Proof of Theorem uzin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 12514 . . . 4 :ℤ⟶𝒫 ℤ
2 ffn 6584 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 5 . . 3 Fn ℤ
4 fvelrnb 6812 . . 3 (ℤ Fn ℤ → (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴))
53, 4ax-mp 5 . 2 (𝐴 ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = 𝐴)
6 fvelrnb 6812 . . 3 (ℤ Fn ℤ → (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵))
73, 6ax-mp 5 . 2 (𝐵 ∈ ran ℤ ↔ ∃𝑦 ∈ ℤ (ℤ𝑦) = 𝐵)
8 ineq1 4136 . . 3 ((ℤ𝑥) = 𝐴 → ((ℤ𝑥) ∩ (ℤ𝑦)) = (𝐴 ∩ (ℤ𝑦)))
98eleq1d 2823 . 2 ((ℤ𝑥) = 𝐴 → (((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ))
10 ineq2 4137 . . 3 ((ℤ𝑦) = 𝐵 → (𝐴 ∩ (ℤ𝑦)) = (𝐴𝐵))
1110eleq1d 2823 . 2 ((ℤ𝑦) = 𝐵 → ((𝐴 ∩ (ℤ𝑦)) ∈ ran ℤ ↔ (𝐴𝐵) ∈ ran ℤ))
12 uzin 12547 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) = (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)))
13 ifcl 4501 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ)
1413ancoms 458 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ)
15 fnfvelrn 6940 . . . 4 ((ℤ Fn ℤ ∧ if(𝑥𝑦, 𝑦, 𝑥) ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
163, 14, 15sylancr 586 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ‘if(𝑥𝑦, 𝑦, 𝑥)) ∈ ran ℤ)
1712, 16eqeltrd 2839 . 2 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑥) ∩ (ℤ𝑦)) ∈ ran ℤ)
185, 7, 9, 11, 172gencl 3462 1 ((𝐴 ∈ ran ℤ𝐵 ∈ ran ℤ) → (𝐴𝐵) ∈ ran ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cin 3882  ifcif 4456  𝒫 cpw 4530   class class class wbr 5070  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  cle 10941  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-neg 11138  df-z 12250  df-uz 12512
This theorem is referenced by:  rexanuz  14985  zfbas  22955  heibor1lem  35894
  Copyright terms: Public domain W3C validator