![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fz2ssnn0 | Structured version Visualization version GIF version |
Description: A finite set of sequential integers that is a subset of ℕ0. (Contributed by Thierry Arnoux, 8-Dec-2021.) |
Ref | Expression |
---|---|
fz2ssnn0 | ⊢ (𝑀 ∈ ℕ0 → (𝑀...𝑁) ⊆ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzssuz 13574 | . 2 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) | |
2 | nn0uz 12894 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
3 | 2 | eleq2i 2821 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (ℤ≥‘0)) |
4 | 3 | biimpi 215 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ (ℤ≥‘0)) |
5 | uzss 12875 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘0) → (ℤ≥‘𝑀) ⊆ (ℤ≥‘0)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑀 ∈ ℕ0 → (ℤ≥‘𝑀) ⊆ (ℤ≥‘0)) |
7 | 6, 2 | sseqtrrdi 4031 | . 2 ⊢ (𝑀 ∈ ℕ0 → (ℤ≥‘𝑀) ⊆ ℕ0) |
8 | 1, 7 | sstrid 3991 | 1 ⊢ (𝑀 ∈ ℕ0 → (𝑀...𝑁) ⊆ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3947 ‘cfv 6548 (class class class)co 7420 0cc0 11138 ℕ0cn0 12502 ℤ≥cuz 12852 ...cfz 13516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 |
This theorem is referenced by: fsum2dsub 34239 breprexplemc 34264 |
Copyright terms: Public domain | W3C validator |